Classic Algebra Question II

Algebra Level 2

x e y x + y e x y 2 = x y \large \frac{xe^{y-x}+ye^{x-y}}{2}=\sqrt{xy}

Given that both x x and y y are positive integers. Find x y x-y .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jian Hau Chooi
Jul 20, 2018

x e y x + y e x y 2 ( x e y x ) ( y e x y ) = x y \frac{xe^{y-x}+ye^{x-y}}{2} \geq \sqrt{(xe^{y-x})(ye^{x-y})} = \sqrt{xy} x e y x + y e x y 2 = x y x e y x = y e x y x y = e 2 ( x y ) \begin{aligned} \frac{xe^{y-x}+ye^{x-y}}{2} &= \sqrt{xy} \\ \iff xe^{y-x} &= ye^{x-y} \\ \frac{x}{y} &= e^{2(x-y)} \\ \end{aligned}

Since e 2 ( x y ) e^{2(x-y)} is a rational number, then the value of x y x-y will be equal to 0 \boxed 0 .

Chew-Seong Cheong
Jul 20, 2018

x e y x + y e x y 2 = x y x e x y + y e x y = 2 x y Squaring both sides x 2 e 2 ( x y ) + 2 x y + y 2 e 2 ( x y ) = 4 x y x 2 e 2 ( x y ) 2 x y + y 2 e 2 ( x y ) = 0 ( x e x y y e x y ) 2 = 0 x e x y = y e x y x y = e 2 ( x y ) \begin{aligned} \frac {xe^{y-x}+ye^{x-y}}2 & = \sqrt{xy} \\ \frac x{e^{x-y}} + ye^{x-y} & = 2\sqrt{xy} & \small \color{#3D99F6} \text{Squaring both sides} \\ \frac {x^2}{e^{2(x-y)}} + 2xy + y^2e^{2(x-y)} & = 4xy \\ \frac {x^2}{e^{2(x-y)}} - 2xy + y^2e^{2(x-y)} & = 0 \\ \left(\frac x{e^{x-y}} - ye^{x-y}\right)^2 & = 0 \\ \implies \frac x{e^{x-y}} & = ye^{x-y} \\ \frac xy & = e^{2(x-y)} \end{aligned}

Note that the LHS is rational. For the RHS to be rational, there is only one solution, which is x y = 0 x-y=\boxed 0 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...