2 x e y − x + y e x − y = x y
Given that both x and y are positive integers. Find x − y .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
2 x e y − x + y e x − y e x − y x + y e x − y e 2 ( x − y ) x 2 + 2 x y + y 2 e 2 ( x − y ) e 2 ( x − y ) x 2 − 2 x y + y 2 e 2 ( x − y ) ( e x − y x − y e x − y ) 2 ⟹ e x − y x y x = x y = 2 x y = 4 x y = 0 = 0 = y e x − y = e 2 ( x − y ) Squaring both sides
Note that the LHS is rational. For the RHS to be rational, there is only one solution, which is x − y = 0 .
Problem Loading...
Note Loading...
Set Loading...
2 x e y − x + y e x − y ≥ ( x e y − x ) ( y e x − y ) = x y 2 x e y − x + y e x − y ⟺ x e y − x y x = x y = y e x − y = e 2 ( x − y )
Since e 2 ( x − y ) is a rational number, then the value of x − y will be equal to 0 .