Tricky Algebra Question II

Algebra Level 3

f ( x ) = x + x x 2 + 1 + x ( x + 4 ) x 2 + 2 + 2 ( x + 2 ) x ( x 2 + 2 ) \large f(x)=x+\frac{x}{x^2+1}+\frac{\ x(x+4)\ }{x^2+2}+\frac{\ 2(x+2)\ }{\ x(x^2+2)}

Denote M M as the maximum value of f ( x ) f(x) for x < 0 x<0 , while m m as the minimum value of f ( x ) f(x) for x > 0 x>0 .

Find M + m M+m .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jian Hau Chooi
Jul 21, 2018

f ( x ) = x + x x 2 + 1 + x ( x + 4 ) x 2 + 2 + 2 ( x + 2 ) x ( x 2 + 2 ) = x 3 + x + x x 2 + 1 + x 3 + 4 x 2 + 2 x + 4 x ( x 2 + 2 ) = x ( x 2 + 2 ) x 2 + 1 + 4 x 2 + 4 x ( x 2 + 2 ) + x 3 + 2 x x ( x 2 + 2 ) = x ( x 2 + 2 ) x 2 + 1 + 4 ( x 2 + 1 ) x ( x 2 + 2 ) + 1 \begin{aligned} f\left(x\right) &= x+\frac{x}{x^2+1}+\frac{\ x\left(x+4\right)\ }{x^2+2}+\frac{\ 2\left(x+2\right)\ }{\ x\left(x^2+2\right)} \\ &= \frac{x^3+x+x}{x^2+1}+\frac{\ x^3+4x^2+2x+4\ }{x\left(x^2+2\right)} \\ &= \frac{x\left(x^2+2\right)}{x^2+1}+\frac{4x^2+4\ }{x\left(x^2+2\right)}+\frac{\ x^3+2x\ }{x\left(x^2+2\right)} \\ &= \frac{x\left(x^2+2\right)}{x^2+1}+\frac{\ 4\left(x^2+1\right)\ }{x\left(x^2+2\right)}+1 \\ \end{aligned}

By using Arithmetic-Geometric Mean Inequality ,

when x > 0 x>0 , f ( x ) 2 ( x ( x 2 + 2 ) x 2 + 1 ) ( 4 ( x 2 + 1 ) x ( x 2 + 2 ) ) + 1 = 5 f(x)\geq2\sqrt{\left(\frac{x\left(x^2+2\right)}{x^2+1}\right)\left(\frac{\ 4\left(x^2+1\right)\ }{x\left(x^2+2\right)}\right)\ }+1=5 when x < 0 x<0 , f ( x ) 2 ( x ( x 2 + 2 ) x 2 + 1 ) ( 4 ( x 2 + 1 ) x ( x 2 + 2 ) ) + 1 = 3 f(x)\le-2\sqrt{\left(\frac{x\left(x^2+2\right)}{x^2+1}\right)\left(\frac{\ 4\left(x^2+1\right)\ }{x\left(x^2+2\right)}\right)\ }+1=-3

From the above, we can found that M + m M+m is equal to 2 \boxed 2 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...