r is made at one end of a capillary tube, with the other end closed. Now, once the closed end is opened, the bubble collapses in time T . Assume that the temperature remains constant, air is inviscid, and its flow is laminar in the tube. Also assume this process to be quasi-static.
A bubble of radiusIf the time taken by another bubble of radius k r to collapse is k n T , find the value of n .
Hint:
Air flows with constant velocity in the capillary tube after collapse.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Really good question , I forgot about the quasi static stuff and just used poiseuille equation ending up with n= 4.
Why you put vol. of cylindrical section equal to vol. of bubble
Relevant wiki: Bernoulli's Principle (Fluids)
Use Bernoulli theorem first of all. P i n − P o u t = R 4 ∗ S in a soap bubble.Hence velocity v 2 = R C (Where C is a constant).Eventually v is proportional to r − 0 . 5 .Now change in volume or d V = 4 ∗ π ∗ r 2 ∗ d r .Also d V = v ∗ d t ∗ A (where A is the surface area of capillary tube)....soon u will get that r 2 ∗ d r proportional to r − 0 . 5 ∗ d t ...now proceed to get that r 3 . 5 is proportional to t .Hence the answer is 3 . 5 and we r done :) . L a T e X
Please edit your solution ie replace R by r in ur bernouli equation
Problem Loading...
Note Loading...
Set Loading...
S i n c e t h e p r o c e s s c a n b e r e g a r d e d a s q u a s i − s t a t i c , w e c a n r e v e r s e t i m e i . e . t h e t i m e t a k e n b y t h e b u b b l e t o c o l l a p s e i s t h e s a m e a s t h e t i m e t a k e n t o b l o w a b u b b l e o f t h e s a m e d i m e n s i o n . I m a g i n e a p i s t o n p u s h i n g a i r w i t h c o n s t a n t v e l o c i t y v i n t h e c a p i l l a r y t u b e o f c r o s s − s e c t i o n a r e a A t o b l o w a b u b b l e o f r a d i u s r . C o n s i d e r a n i n f i n i t e s i m a l l y s m a l l c y l i n d r i c a l e l e m e n t o f a i r i n t h e c a p i l l a r y t u b e . T h e l e n g t h o f t h i s e l e m e n t i s v d t a n d i t s m a s s i s ρ A v d t w h e r e ρ i s t h e d e n s i t y o f a i r . A s s u m i n g t h e c o l l i s i o n b e t w e e n t h e a i r m o l e c u l e s a n d t h e s u r f a c e o f s o a p b u b b l e t o b e i n e l a s t i c , t h e f o r c e e x e r t e d o n t h e s u r f a c e o f t h e b u b b l e i s F b u b b l e = d t d P = d t ( ρ A v d t ) v = ρ A v 2 T h e t o t a l d i s t a n c e t h e p i s t o n t r a v e l s i s v T U s i n g W o r k E n e r g y T h e o r e m a n d e x c l u d i n g t h e p i s t o n i n o u r s y s t e m , w e g e t W e x t = ρ A v 2 ( v T ) = ρ A v 3 T Δ U = 4 π r 2 ( 2 σ ) = 8 σ π r 2 w h e r e σ i s t h e s u r f a c e t e n s i o n o f s o a p b u b b l e Δ T = Δ 2 1 m v 2 = − 2 1 ( ρ A v T ) v 2 = − 2 ρ A T v 3 a s t h e f i n a l k i n e t i c e n e r g y i n t h e m o l e c u l e s i s 0 a s t h e y h a v e u n d e r g o n e i n e l a s t i c c o l l i s i o n . T h e r e f o r e W e x t = Δ U + Δ T ρ A v 3 T = 8 σ π r 2 − 2 ρ A T v 3 C o n s e r v i n g v o l u m e , A v T = 3 4 π r 3 C o m b i n i n g b o t h t h e a b o v e e q u a t i o n s , w e g e t v = ρ r 4 σ S u b s t i t u t i n g t h i s i n V o l u m e C o n s e r v a t i o n g i v e s T = 3 A 4 π 4 σ ρ r 7 / 2 = Z r 7 / 2 H e n c e t h e r e q u i r e d t i m e i s T ˉ = Z ( k r ) 7 / 2 = T k 7 / 2 T h e r e f o r e , n = 2 7