Classical Collapse

A bubble of radius r r is made at one end of a capillary tube, with the other end closed. Now, once the closed end is opened, the bubble collapses in time T T . Assume that the temperature remains constant, air is inviscid, and its flow is laminar in the tube. Also assume this process to be quasi-static.

If the time taken by another bubble of radius k r kr to collapse is k n T { k }^{ n }T , find the value of n . n.


Hint: Air flows with constant velocity in the capillary tube after collapse.


The answer is 3.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Akash Saha
Jun 1, 2017

S i n c e t h e p r o c e s s c a n b e r e g a r d e d a s q u a s i s t a t i c , w e c a n r e v e r s e t i m e i . e . t h e t i m e t a k e n b y t h e b u b b l e t o c o l l a p s e i s t h e s a m e a s t h e t i m e t a k e n t o b l o w a b u b b l e o f t h e s a m e d i m e n s i o n . I m a g i n e a p i s t o n p u s h i n g a i r w i t h c o n s t a n t v e l o c i t y v i n t h e c a p i l l a r y t u b e o f c r o s s s e c t i o n a r e a A t o b l o w a b u b b l e o f r a d i u s r . C o n s i d e r a n i n f i n i t e s i m a l l y s m a l l c y l i n d r i c a l e l e m e n t o f a i r i n t h e c a p i l l a r y t u b e . T h e l e n g t h o f t h i s e l e m e n t i s v d t a n d i t s m a s s i s ρ A v d t w h e r e ρ i s t h e d e n s i t y o f a i r . A s s u m i n g t h e c o l l i s i o n b e t w e e n t h e a i r m o l e c u l e s a n d t h e s u r f a c e o f s o a p b u b b l e t o b e i n e l a s t i c , t h e f o r c e e x e r t e d o n t h e s u r f a c e o f t h e b u b b l e i s F b u b b l e = d P d t = ( ρ A v d t ) v d t = ρ A v 2 T h e t o t a l d i s t a n c e t h e p i s t o n t r a v e l s i s v T U s i n g W o r k E n e r g y T h e o r e m a n d e x c l u d i n g t h e p i s t o n i n o u r s y s t e m , w e g e t W e x t = ρ A v 2 ( v T ) = ρ A v 3 T Δ U = 4 π r 2 ( 2 σ ) = 8 σ π r 2 w h e r e σ i s t h e s u r f a c e t e n s i o n o f s o a p b u b b l e Δ T = Δ 1 2 m v 2 = 1 2 ( ρ A v T ) v 2 = ρ A T v 3 2 a s t h e f i n a l k i n e t i c e n e r g y i n t h e m o l e c u l e s i s 0 a s t h e y h a v e u n d e r g o n e i n e l a s t i c c o l l i s i o n . T h e r e f o r e W e x t = Δ U + Δ T ρ A v 3 T = 8 σ π r 2 ρ A T v 3 2 C o n s e r v i n g v o l u m e , A v T = 4 3 π r 3 C o m b i n i n g b o t h t h e a b o v e e q u a t i o n s , w e g e t v = 4 σ ρ r S u b s t i t u t i n g t h i s i n V o l u m e C o n s e r v a t i o n g i v e s T = 4 π 3 A ρ 4 σ r 7 / 2 = Z r 7 / 2 H e n c e t h e r e q u i r e d t i m e i s T ˉ = Z ( k r ) 7 / 2 = T k 7 / 2 T h e r e f o r e , n = 7 2 Since\quad the\quad process\quad can\quad be\quad regarded\quad as\quad quasi-static,\quad we\quad can\quad reverse\quad time\quad i.e.\quad the\quad time\quad taken\quad by\quad the\quad bubble\quad to\quad collapse\quad is\quad the\quad same\quad as\quad the\quad time\quad taken\quad to\quad blow\quad a\quad bubble\quad of\quad the\quad same\quad dimension.\\ \\ Imagine\quad a\quad piston\quad pushing\quad air\quad with\quad constant\quad velocity\quad v\quad in\quad the\quad capillary\quad tube\quad of\quad cross-section\quad area\quad A\quad to\quad blow\quad a\quad bubble\quad of\quad radius\quad r\quad .\\ Consider\quad an\quad infinitesimally\quad small\quad cylindrical\quad element\quad of\quad air\quad in\quad the\quad capillary\quad tube.\\ The\quad length\quad of\quad this\quad element\quad is\quad vdt\quad and\quad its\quad mass\quad is\quad \rho Avdt\quad where\quad \rho \quad is\quad the\quad density\quad of\quad air.\\ Assuming\quad the\quad collision\quad between\quad the\quad air\quad molecules\quad and\quad the\quad surface\quad of\quad soap\quad bubble\quad to\quad be\quad inelastic,\\ the\quad force\quad exerted\quad on\quad the\quad surface\quad of\quad the\quad bubble\quad is\quad { F }_{ bubble }=\frac { dP }{ dt } =\frac { (\rho Avdt)v }{ dt } =\rho A{ v }^{ 2 }\\ The\quad total\quad distance\quad the\quad piston\quad travels\quad is\quad vT\quad \\ Using\quad Work\quad Energy\quad Theorem\quad and\quad excluding\quad the\quad piston\quad in\quad our\quad system,\quad we\quad get\\ { W }_{ ext }=\rho A{ v }^{ 2 }(vT)=\rho A{ v }^{ 3 }T\\ \Delta U=4\pi { r }^{ 2 }(2\sigma )=8\sigma \pi { r }^{ 2 }\quad where\quad \sigma \quad is\quad the\quad surface\quad tension\quad of\quad soap\quad bubble\\ \Delta T=\Delta \frac { 1 }{ 2 } m{ v }^{ 2 }=-\frac { 1 }{ 2 } (\rho AvT){ v }^{ 2 }=-\frac { \rho AT{ v }^{ 3 } }{ 2 } \quad as\quad the\quad final\quad kinetic\quad energy\quad in\quad the\quad molecules\quad is\quad 0\quad as\quad they\quad have\quad undergone\quad inelastic\quad collision.\\ Therefore\quad { W }_{ ext }\quad =\quad \Delta U\quad +\quad \Delta T\\ \rho A{ v }^{ 3 }T\quad =\quad 8\sigma \pi { r }^{ 2 }\quad -\quad \frac { \rho AT{ v }^{ 3 } }{ 2 } \\ Conserving\quad volume,\quad AvT=\frac { 4 }{ 3 } \pi { r }^{ 3 }\\ Combining\quad both\quad the\quad above\quad equations,\quad we\quad get\quad v=\sqrt { \frac { 4\sigma }{ \rho r } } \\ Substituting\quad this\quad in\quad Volume\quad Conservation\quad gives\quad T=\frac { 4\pi }{ 3A } \sqrt { \frac { \rho }{ 4\sigma } } { r }^{ 7/2 }=Z{ r }^{ 7/2 }\\ Hence\quad the\quad required\quad time\quad is\quad \bar { T } =Z(k{ r) }^{ 7/2 }=T{ k }^{ 7/2 }\\ Therefore,\boxed { n=\frac { 7 }{ 2 } }

Really good question , I forgot about the quasi static stuff and just used poiseuille equation ending up with n= 4.

Why you put vol. of cylindrical section equal to vol. of bubble

raj abhinav - 1 year, 3 months ago
Rajdeep Brahma
Jun 24, 2018

Relevant wiki: Bernoulli's Principle (Fluids)

Use Bernoulli theorem first of all. P i n P o u t = Pin-Pout= 4 S R \frac{4*S}{R} in a soap bubble.Hence velocity v 2 v^2 = C R \frac{C}{R} (Where C C is a constant).Eventually v v is proportional to r 0.5 r^{-0.5} .Now change in volume or d V dV = 4 π r 2 d r 4*\pi*r^2*dr .Also d V = v d t A dV=v*dt*A (where A is the surface area of capillary tube)....soon u will get that r 2 d r r^2*dr proportional to r 0.5 d t r^{-0.5}*dt ...now proceed to get that r 3.5 r^{3.5} is proportional to t t .Hence the answer is 3.5 3.5 and we r done :) . L a T e X LaTeX

Please edit your solution ie replace R by r in ur bernouli equation

Soumyajit Banerjee - 2 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...