Classical Mechanic problem No.1

Classical Mechanics Level pending

A small object M M oscillating harmonically on O x Ox axis with amplitude A A and O O is the balance point. When x M = 2 c m |x_{M}| = 2cm , the kinetic energy of M M W K E = 0.48 J W_{KE} = 0.48 J ; x M = 6 c m W K E = 0.32 J |x_{M}| = 6cm \implies W_{KE} = 0.32 J .

Calculate the amplitude A A of M M .

Answer written in c m cm .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Karan Chatrath
Jun 9, 2021

Let the SHM be governed by the equation:

x ( t ) = A sin ( ω t + ϕ ) ; x ˙ ( t ) = A ω cos ( ω t + ϕ ) x(t) = A \sin\left( \omega t + \phi\right) \ ; \ \dot{x} (t)= A \omega \cos\left( \omega t + \phi\right)

Let x = 2 c m x = 2 \ \mathrm{cm} at time t = t 1 t=t_1 and x = 6 c m x = 6 \ \mathrm{cm} at time t = t 2 t=t_2 . That gives:

2 100 = A sin ( ω t 1 + ϕ ) ; 6 100 = A sin ( ω t 2 + ϕ ) \frac{2}{100} = A \sin\left( \omega t_1 + \phi\right) \ ; \ \frac{6}{100} = A \sin\left( \omega t_2 + \phi\right)

Now, the KE of the particle is:

T ( t ) = m A 2 ω 2 cos 2 ( ω t + ϕ ) 2 = m ω 2 ( A 2 A 2 sin 2 ( ω t + ϕ ) ) 2 = m ω 2 ( A 2 x ( t ) 2 ) 2 \mathcal{T}(t) = \frac{mA^2\omega^2 \cos^2\left( \omega t + \phi\right)}{2}=\frac{m\omega^2 \left(A^2 - A^2\sin^2\left( \omega t + \phi\right) \right)}{2} = \frac{m\omega^2 \left(A^2 - x(t)^2 \right)}{2}

T ( t 1 ) = m ω 2 ( A 2 x ( t 1 ) 2 ) 2 0.48 = m ω 2 ( A 2 ( 2 100 ) 2 ) 2 \mathcal{T}(t_1)= \frac{m\omega^2 \left(A^2 - x(t_1)^2 \right)}{2} \implies 0.48 = \frac{m\omega^2 \left(A^2 - \left(\frac{2}{100}\right)^2 \right)}{2} T ( t 2 ) = m ω 2 ( A 2 x ( t 2 ) 2 ) 2 0.32 = m ω 2 ( A 2 ( 6 100 ) 2 ) 2 \mathcal{T}(t_2)= \frac{m\omega^2 \left(A^2 - x(t_2)^2 \right)}{2} \implies 0.32 = \frac{m\omega^2 \left(A^2 - \left(\frac{6}{100}\right)^2 \right)}{2}

Dividing both equations and solving for A A . Leaving out final simplifications:

A = 10 c m A = 10 \ \mathrm{cm}

@Karan Chatrath So where you are migrating now ?? I want to download your all problems and solutions .

Talulah Riley - 2 days, 17 hours ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...