Classical

Algebra Level 3

1 a 3 ( b + c ) + 1 b 3 ( a + c ) + 1 c 3 ( a + b ) \large \dfrac{1}{a^3(b+c)}+\dfrac{1}{b^3(a+c)}+\dfrac{1}{c^3(a+b)}

Let a a , b b , and c c be positive real numbers such that a b c = 1 abc=1 , then find the minimum value of the expression above.


The answer is 1.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Put a = 1 x , b = 1 y , c = 1 z \displaystyle a=\frac{1}{x},b=\frac{1}{y},c=\frac{1}{z} and it turns,

S = x , y , z x 3 y z y + z = x y z x , y , z x 2 y + z \displaystyle S = \sum_{x,y,z} \frac{x^3 yz}{y+z} = xyz\sum_{x,y,z} \frac{x^2}{y+z}

Since we have x y z = 1 xyz=1 , x + y + z 3 \displaystyle x+y+z \ge 3

By Titu's Lemma ,

x , y , z x 2 y + z ( x + y + z ) 2 2 ( x + y + z ) 3 2 \displaystyle \sum_{x,y,z} \frac{x^2}{y+z} \ge \frac{(x+y+z)^2}{2(x+y+z)} \ge \frac{3}{2}

So , S = a , b , c 1 a 3 ( b + c ) = x , y , z x 3 y z y + z 3 2 \displaystyle S=\sum_{a,b,c}\frac{1}{a^3(b+c)} = \sum_{x,y,z} \frac{x^3 yz}{y+z} \ge \frac{3}{2}

Interesting Solution! +1

Mehul Arora - 5 years ago

Log in to reply

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...