Clear the boundary of Parameter

Algebra Level pending

Given that x 3 ( x + 1 ) = 2 ( x + a ) ( x + 2 a ) { x }^{ 3 }(x+1)=2(x+a)(x+2a) , where a a is a real parameter.

Here, a [ α , β ] a\in [\alpha ,\beta ] , find α + β \alpha +\beta .


The answer is 0.375.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

G i v e n t h a t , x 3 ( x + 1 ) = 2 ( x + a ) ( x + 2 a ) x 4 + x 3 2 x 2 6 a x 4 a 2 = 0 4 a 2 + 6 a x ( x 4 + x 3 2 x 2 ) = 0 Δ = ( 4 x 2 + 2 x ) 2 L e t a 1 , a 2 b e t h e r o o t s o f t h e a b o v e e q u a t i o n a 1 = 1 2 ( x 2 x ) ; a 2 = 1 2 ( x 2 + 2 x ) S o , ( 2 a x 2 + x ) ( 2 a + x 2 + 2 x ) = 0 S o , x 1 , 2 = 1 ± 1 2 a ; x 3 , 4 = 1 2 ± 1 2 1 + 8 a w h i c h a r e a l l r e a l i f a [ 1 8 , 1 2 ] . S o , α + β = 0.375 Given\quad that,\\ \qquad { x }^{ 3 }(x+1)=2(x+a)(x+2a)\\ \qquad { x }^{ 4 }+{ x }^{ 3 }-2{ x }^{ 2 }-6ax-4{ a }^{ 2 }=0\\ \qquad 4{ a }^{ 2 }+6ax-({ x }^{ 4 }+{ x }^{ 3 }-2{ x }^{ 2 })=0\\ \qquad \Delta ={ (4{ x }^{ 2 }+2x) }^{ 2 }\\ \qquad Let\quad { a }_{ 1 },{ a }_{ 2 }\quad be\quad the\quad roots\quad of\quad the\quad above\quad equation\\ \qquad { a }_{ 1 }=\frac { 1 }{ 2 } ({ x }^{ 2 }-x);\quad { a }_{ 2 }=-\frac { 1 }{ 2 } ({ x }^{ 2 }+2x)\\ \qquad So,\quad (2a-{ x }^{ 2 }+x)(2a+{ x }^{ 2 }+2x)=0\\ \qquad So,\quad { x }_{ 1,2 }=-1\pm \sqrt { 1-2a } ;\quad { x }_{ 3,4 }=\frac { 1 }{ 2 } \pm \frac { 1 }{ 2 } \sqrt { 1+8a } \\ \qquad which\quad are\quad all\quad real\quad if\quad a\in \left[ \frac { -1 }{ 8 } ,\frac { 1 }{ 2 } \right] .\\ \qquad So,\quad \alpha +\beta =0.375

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...