Maybe the roots are rational? I'll try that

Algebra Level 5

Let p , q p,q and r r be the roots of f ( x ) = x 3 + 3 x + 8 f(x)=x^3+3x+8 . Suppose a monic cubic g ( x ) g(x) has the roots

p 2 + q 2 r 2 , p 2 + r 2 q 2 , q 2 + r 2 p 2 \frac{p^2+q^2}{r^2}, \frac{p^2+r^2}{q^2}, \frac{q^2+r^2}{p^2}

The value of g ( 1 ) g(-1) is a b \dfrac{a}{b} for relatively prime a a and b b . Find a + b a+b .


The answer is 35.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 16, 2014

Since p p , q q and r r are the roots of f ( x ) = x 3 + 3 x + 8 f(x) = x^3+3x+8 .
Therefore, p + q + r = 0 p+q+r=0 , p q + q r + r p = 3 pq+qr+rp=3 and p q r = 8 pqr = -8 .

Since g ( x ) = ( x p 2 + q 2 r 2 ) ( x q 2 + r 2 p 2 ) ( x r 2 + p 2 q 2 ) g(x) = \left( x - \frac {p^2+q^2}{r^2} \right) \left( x - \frac {q^2+r^2}{p^2} \right) \left( x - \frac {r^2+p^2}{q^2} \right)

g ( 1 ) = ( 1 p 2 + q 2 r 2 ) ( 1 q 2 + r 2 p 2 ) ( 1 r 2 + p 2 q 2 ) \Rightarrow g(-1) = \left( -1 - \frac {p^2+q^2}{r^2} \right) \left( -1 - \frac {q^2+r^2}{p^2} \right) \left( -1 - \frac {r^2+p^2}{q^2} \right)

We note that: 1 p 2 + q 2 r 2 = r 2 + p 2 + q 2 r 2 = ( p + q + r ) 2 2 ( p q + q r + r p ) r 2 -1 - \dfrac {p^2+q^2}{r^2} = - \dfrac {r^2 + p^2+q^2}{r^2} = - \dfrac {(p+q+r)^2-2(pq+qr+rp)}{r^2}

= 0 2 ( 3 ) r 2 = 6 r 2 = - \dfrac {0 - 2(3)}{r^2} = \dfrac {6}{r^2}

g ( 1 ) = ( 6 r 2 ) ( 6 p 2 ) ( 6 q 2 ) = 6 3 ( p q r ) 2 = 216 64 = 27 8 = 35 \Rightarrow g(-1) = \left( \dfrac {6}{r^2} \right) \left(\dfrac {6}{p^2} \right) \left(\dfrac {6}{q^2} \right) = \dfrac {6^3} {(pqr)^2} = \dfrac {216} {64} = \dfrac {27} {8} = \boxed {35}

This is the smart solution. I did it the same way. Because i m lazy at going long way.

Sandeep Bhardwaj - 6 years, 7 months ago

Great solution!

John Frank - 4 years, 5 months ago

27/8 is not 35 ...

Nikola Djuric - 6 years, 6 months ago

Log in to reply

eh can figure out that he means the answer is 35 from fraction 27/8

Alex Wang - 6 years, 6 months ago
Souryajit Roy
Oct 6, 2014

Lemma: The roots of a equation x 3 + p x 2 + q x + r = 0 x^3+px^2+qx+r=0 are a , b , c a,b,c .

Then cubic equation whose roots are a + b c \frac{a+b}{c} , b + c a \frac{b+c}{a} and c + a b \frac{c+a}{b} is r ( x + 1 ) 3 p q ( x + 1 ) 2 + p 3 ( x + 1 ) p 3 = 0 r(x+1)^{3}-pq(x+1)^{2}+p^{3}(x+1)-p^{3}=0

Proof Let y = b + c a = p a a y=\frac{b+c}{a}=\frac{-p-a}{a} (since a + b + c = p ) a+b+c=-p)

Hence, y = p a 1 y=-\frac{p}{a}-1 . So, 1 a = y + 1 p \frac{1}{a}=\frac{y+1}{-p}

Since, a a is a root of the given equation,

a 3 + p a 2 + q a + r = 0 a^3+pa^2+qa+r=0

Dividing both sides by a 3 a^{3} ,we get

1 + p 1 a + q 1 a 2 + r 1 a 3 = 0 1+p\frac{1}{a}+q\frac{1}{a^2}+r\frac{1}{a^3}=0

Putting 1 a = y + 1 p \frac{1}{a}=\frac{y+1}{-p} and multiplying both sides by p 3 -p^{3} , we get the required equation.

Solution of the Main Problem

First, we will find the equation whose roots are p 2 , q 2 , r 2 p^2,q^2,r^2

p 2 + q 2 + r 2 = ( p + q + r ) 2 2 ( p q + q r + r p ) = 0 2 × 3 = 6 p^2+q^2+r^2=(p+q+r)^2-2(pq+qr+rp)=0-2\times3=-6

p 2 q 2 + q 2 r 2 + r 2 p 2 = ( p q + q r + r p ) 2 2 p q r ( p + q + r ) = 3 2 = 9 p^{2}q^{2}+q^{2}r^{2}+r^{2}p^{2}=(pq+qr+rp)^2-2pqr(p+q+r)=3^2=9

p 2 q 2 r 2 = ( 8 ) 2 = 64 p^{2}q^{2}r^{2}=(-8)^2=64

So, the equation whose roots are p 2 , q 2 , r 2 p^2,q^2,r^2 is x 3 + 6 x 2 + 9 x 64 = 0 x^3+6x^2+9x-64=0 ....(i)

From (i), we get the equation whose roots are p 2 + q 2 r 2 \frac{p^2+q^2}{r^2} , q 2 + r 2 p 2 \frac{q^2+r^2}{p^2} and r 2 + p 2 q 2 \frac{r^2+p^2}{q^2} (Using the lemma)

The equation is 64 ( x + 1 ) 3 54 ( x + 1 ) 2 + 216 ( x + 1 ) 216 = 0 -64(x+1)^3-54(x+1)^2+216(x+1)-216=0

Hence, the required monic cubic is

g ( x ) = ( x + 1 ) 3 + 54 64 ( x + 1 ) 2 216 64 ( x + 1 ) + 216 64 g(x)=(x+1)^3+\frac{54}{64}(x+1)^2-\frac{216}{64}(x+1)+\frac{216}{64}

Hence g ( 1 ) = 216 64 = 27 8 g(-1)=\frac{216}{64}=\frac{27}{8}

hence, a + b = 27 + 8 = 35 a+b=27+8=35

A simpler way to find an equation whose roots are α 2 \alpha^2 is to take ( 1 ) 3 f ( x ) f ( x ) (-1)^3 f(\sqrt{x}) f( -\sqrt{ x}) .

The reason is that we want to find the polynomial that is

( x α i 2 ) = ( x α i ) ( x + α i ) = ( x α i ) ( 1 ) ( x α i ) = ( 1 ) n f ( x ) f ( x ) . \prod ( x - \alpha_i ^2 ) = \prod ( \sqrt{x} - \alpha_i) ( \sqrt{x} + \alpha_i) \\ = \prod( \sqrt{x} - \alpha_i) \cdot (-1) ( -\sqrt{x} - \alpha_i) \\ = ( -1)^n f(\sqrt{x}) f( -\sqrt{x}) .

Calvin Lin Staff - 6 years, 6 months ago

Log in to reply

incredible observation.

Subhajit Ghosh - 6 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...