Clever

Algebra Level 4

If p p , q q and r r are the three roots of x 3 + x 2 + x 8 = 0 , x^3+x^2+x-8=0, what is the value of

p 3 + 2 p 2 + p + q 3 + 2 q 2 + q + r 3 + 2 r 2 + r ? p^3+2p^2+p+q^3+2q^2+q+r^3+2r^2+r?


The answer is 23.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Aug 31, 2014

Since p p , q q and r r are the roots of x 3 + x 2 + x 8 = 0 x^3+x^2+x-8=0 , then p 3 + p 2 + p = 8 p^3+p^2+p=8 , q 3 + q 2 + q = 8 q^3+q^2+q=8 and r 3 + r 2 + r = 8 r^3+r^2+r=8 .

Therefore,

p 3 + 2 p 2 + p + q 3 + 2 q 2 + r 3 + 2 r 2 + r p^3+2p^2+p+q^3+2q^2+r^3+2r^2+r

= p 3 + p 2 + p + q 3 + q 2 + r 3 + r 2 + r + p 2 + q 2 + r 2 =p^3+p^2+p+q^3+q^2+r^3+r^2+r+p^2+q^2+r^2

= 8 + 8 + 8 + p 2 + q 2 + r 2 = 24 + p 2 + q 2 + r 2 =8+8+8+p^2+q^2+r^2=24+p^2+q^2+r^2

We now need to find = p 2 + q 2 + r 2 =p^2+q^2+r^2 .

Since p p , q q and r r are the roots of x 3 + x 2 + x 8 = 0 x^3+x^2+x-8=0 , then:

x 3 + x 2 + x 8 = ( x p ) ( x q ) ( x r ) x^3+x^2+x-8=(x-p)(x-q)(x-r)

= x 3 ( p + q + r ) x 2 + ( p q + q r + r p ) x p q r \quad \quad\ \quad \quad \quad \quad = x^3 - (p+q+r)x^2 + (pq+qr+rp)x - pqr

p + q + r = 1 \Rightarrow p+q+r = -1

p q + q r + r p = 1 \quad pq+qr+rp = 1

Now we have:

( p + q + r ) 2 = p 2 + q 2 + r 2 + 2 ( p q + q r + r p ) (p+q+r)^2 = p^2+q^2+r^2 + 2(pq+qr+rp)

( 1 ) 2 = p 2 + q 2 + r 2 + 2 ( 1 ) (-1)^2 = p^2+q^2+r^2 + 2(1)

p 2 + q 2 + r 2 = 1 2 = 1 \Rightarrow p^2+q^2+r^2 = 1 -2 = -1

Therefore, p 3 + 2 p 2 + p + q 3 + 2 q 2 + r 3 + 2 r 2 + r = 24 1 = 23 p^3+2p^2+p+q^3+2q^2+r^3+2r^2+r=24-1=\boxed{23}

Could you explain the first step for me, how the cube of the root plus the square of the root plus the root itself equals 8 for each root?

Ryan Tamburrino - 6 years, 9 months ago

Log in to reply

f(x)=x^3 + x^2 + x - 8 = 0 ; f(x) = 8 f(p) = p^3 + p^2 + p - 8 = 0; f(p) = 8 similarly f(q)=f(r)=8

Raven Herd - 6 years, 9 months ago

Very nice solution.

Panya Chunnanonda - 6 years, 7 months ago

Nice approach

Department 8 - 5 years, 11 months ago
Isaac Jiménez
Aug 31, 2014

I think the problem is easier knowing Newton´s Sums.

Lets see p 3 + 2 p 2 + p + q 3 + 2 q 2 + q + r 3 + 2 r 2 + r { p }^{ 3 }+{ 2p }^{ 2 }+{ p }+{ q }^{ 3 }+{ 2q }^{ 2 }+q+{ r }^{ 3 }+{ 2r }^{ 2 }+{ r } can be written as ( p + q + r ) + 2 ( p 2 + q 2 + r 2 ) + ( p 3 + q 3 + r 3 ) (p+q+r)+2({ p }^{ 2 }+{ q }^{ 2 }+{ r }^{ 2 })+({ p }^{ 3 }+{ q }^{ 3 }+{ r }^{ 3 }) .

Say P 1 = p + q + r , P 2 = p 2 + q 2 + r 2 , P 3 = p 3 + q 3 + r 3 { P }_{ 1 }=p+q+r,{ P }_{ 2 }={ p }^{ 2 }+{ q }^{ 2 }+{ r }^{ 2 },{ P }_{ 3 }={ p }^{ 3 }+{ q }^{ 3 }+{ r }^{ 3 } .Now according to Newton´s Sums, we know:

P 1 + 1 = 0 P 1 = 1 { P }_{ 1 }+1=0\Rightarrow { P }_{ 1 }=-1

P 2 + P 1 + 2 = 0 P 2 = 1 { P }_{ 2 }+{ P }_{ 1 }+2=0\Rightarrow { P }_{ 2 }=-1

P 3 + P 2 + P 1 24 = 0 P 3 = 26 { P }_{ 3 }+{ P }_{ 2 }+{ P }_{ 1 }-24=0\Rightarrow { P }_{ 3 }=26 .

So ( p + q + r ) + 2 ( p 2 + q 2 + r 2 ) + ( p 3 + q 3 + r 3 ) = ( 1 ) + 2 ( 1 ) + 26 = 23 (p+q+r)+2({ p }^{ 2 }+{ q }^{ 2 }+{ r }^{ 2 })+({ p }^{ 3 }+{ q }^{ 3 }+{ r }^{ 3 })=(-1)+2(-1)+26=\boxed { 23 } .

It's so amazing for me, but how do you do if you did not know "Newton' s sum" like this.

Panya Chunnanonda - 6 years, 7 months ago

Same method!

Swapnil Das - 6 years ago

Since, x^3+x^2+x-8=0 is polynomial equation with leading coefficient 1, therefore, sum of the roots=p+q+r= -(coefficient of x^2/coefficient of x^3)=-(1)/(1)=- 1 and product of roots taken two at a time=pq+qr+rp=(coefficient of x/coefficient of x^3)= (1)/(1)=1 My remaining steps are the same as that of Chew-Seong Cheong

Ankush Gogoi
Aug 20, 2014

Since p,q,r are the roots of the given equation therefore we can write x=p,x=q & x=r...from the given equation we get p+q+r=-1 & pq+qr+pr=1...now the expression whose value is to be found out can be written as x^3 + 2 x^2 + x + x^3 + 2 x^2 + x + x^3 + 2 x^2 +x = 3 x^3 + 6 x^2 + 3x....we have x^3 + x^2 + x=8....So divide (3 x^3 + 6 x^2 + 3x) by (x^3 + x^2 + x) using long division....we get quotient as 3 and remainder as 3 x^2....so (3 x^3 + 6 x^2 +3x)=((x^3 + x^2 + x) * 3 ) + 3 x^2...= 8*3 + 3 x^2 = 24 + x^2 + x^2 + x^2 =24 + p^2 +q^2 + r^2 = 24+ ((p+q+r)^2 -2(pq+qr+pr)) = 24+1-2 = 23...

This is also amazing solution for me.

Panya Chunnanonda - 6 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...