Clever Manipu 5 ^5 lation

Algebra Level 3

u 5 + 1 u 5 \Large u^5+\dfrac{1}{u^5} If u 2 + 1 u 2 = 14 u^2+\dfrac{1}{u^2}=14\; and u > 0 \;u>0 , then find the value of the above expression.


The answer is 724.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Note first that ( u + 1 u ) 2 = u 2 + 1 u 2 + 2 = 14 + 2 = 16 u + 1 u = 4 \left(u + \dfrac{1}{u}\right)^{2} = u^{2} + \dfrac{1}{u^{2}} + 2 = 14 + 2 = 16 \Longrightarrow u + \dfrac{1}{u} = 4

since we are given that u > 0 u \gt 0 . Then

u 3 + 1 u 3 = ( u + 1 u ) ( u 2 + 1 u 2 ) ( u + 1 u ) = 4 × 14 4 = 52 u^{3} + \dfrac{1}{u^{3}} = \left(u + \dfrac{1}{u}\right)\left(u^{2} + \dfrac{1}{u^{2}}\right) - \left(u + \dfrac{1}{u}\right) = 4 \times 14 - 4 = 52 .

So finally u 5 + 1 u 5 = ( u 2 + 1 u 2 ) ( u 3 + 1 u 3 ) ( u + 1 u ) = 14 × 52 4 = 724 u^{5} + \dfrac{1}{u^{5}} = \left(u^{2} + \dfrac{1}{u^{2}}\right)\left(u^{3} + \dfrac{1}{u^{3}}\right) - \left(u + \dfrac{1}{u}\right) = 14 \times 52 - 4 = \boxed{724} .

+1 Your solution is a great read:

  1. Nice choice of equations used to arrive at u 5 + 1 u 5 u^5 + \frac{1}{u^5 } .

Thanks for contributing and helping other members aspire to be like you

Calvin Lin Staff - 4 years, 8 months ago

I did the same way..

Fidel Simanjuntak - 4 years, 5 months ago
Tapas Mazumdar
Oct 14, 2016

u 2 + 1 u 2 = 14 \color{#3D99F6}{u^2 + \dfrac{1}{u^2} = 14}

Now, we have

u 5 + 1 u 5 = u 5 + 1 u 5 + ( u + 1 u ) ( u + 1 u ) = u 5 + 1 u + u + 1 u 5 ( u + 1 u ) = u 2 ( u 3 + 1 u 3 ) + 1 u 2 ( u 3 + 1 u 3 ) ( u + 1 u ) = ( u 2 + 1 u 2 ) ( u 3 + 1 u 3 ) ( u + 1 u ) = ( u 2 + 1 u 2 ) { ( u + 1 u ) ( u 2 + 1 u 2 1 ) } ( u + 1 u ) = ( u 2 + 1 u 2 ) { ( ( u + 1 u ) 2 ) ( u 2 + 1 u 2 1 ) } ( ( u + 1 u ) 2 ) = ( u 2 + 1 u 2 ) { ( u 2 + 1 u 2 + 2 ) ( u 2 + 1 u 2 1 ) } ( u 2 + 1 u 2 + 2 ) = ( 14 ) { ( 14 + 2 ) ( 14 1 ) } ( 14 + 2 ) = 14 ( 4 × 13 ) 4 = 728 4 = 724 \begin{aligned} u^5 + \dfrac{1}{u^5} &= u^5 + \dfrac{1}{u^5} + \left( u + \dfrac 1u \right) - \left( u + \dfrac 1u \right) \\ &= u^5 + \dfrac 1u + u + \dfrac{1}{u^5} - \left( u + \dfrac 1u \right) \\ &= u^2 \left( u^3 + \dfrac{1}{u^3} \right) + \dfrac{1}{u^2} \left( u^3 + \dfrac{1}{u^3} \right) - \left( u + \dfrac 1u \right) \\ &= \left( {\color{#3D99F6}{u^2 + \dfrac{1}{u^2}}}\right) \left( u^3 + \dfrac{1}{u^3} \right) - \left( u + \dfrac 1u \right) \\ &= \left( {\color{#3D99F6}{u^2 + \dfrac{1}{u^2}}}\right) \left\{ \left( u + \dfrac 1u \right) \left( {\color{#3D99F6}{u^2 + \dfrac{1}{u^2}}} - 1 \right) \right\} - \left( u + \dfrac 1u \right) \\ &= \left( {\color{#3D99F6}{u^2 + \dfrac{1}{u^2}}} \right) \left\{ \left( \sqrt{ {\left( u + \dfrac 1u \right)}^2 } \right) \left( {\color{#3D99F6}{u^2 + \dfrac{1}{u^2}}} - 1 \right) \right\} - \left( \sqrt{ {\left( u + \dfrac 1u \right)}^2 } \right) \\ &= \left( {\color{#3D99F6}{u^2 + \dfrac{1}{u^2}}} \right) \left\{ \left( \sqrt{ {\color{#3D99F6}{ u^2 + \dfrac{1}{u^2}}} +2 } \right) \left( {\color{#3D99F6}{u^2 + \dfrac{1}{u^2}}} - 1 \right) \right\} - \left( \sqrt{ {\color{#3D99F6}{ u^2 + \dfrac{1}{u^2}}} +2 } \right) \\ &= \left( {\color{#3D99F6}{14}} \right) \left\{ \left( \sqrt{ {\color{#3D99F6}{14}} + 2} \right) \left( {\color{#3D99F6}{14}} - 1 \right) \right\} - \left( \sqrt{{\color{#3D99F6}{14}} + 2} \right) \\ &= 14 \left( 4 \times 13 \right) - 4 \\ &= 728 - 4 \\ &= \boxed{724} \end{aligned}

+1 This is correct! Given the slightly long writeup of your steps, it is worth considering whether a shorter solution exists.

Hint: ( x 2 + 1 x 2 ) ( x 3 + 1 x 3 ) = ( x 5 + 1 x 5 ) + ( x + 1 x ) \left (x^2 + \frac1{x^2}\right) \left(x^3 + \dfrac1{x^3} \right) = \left(x^5 + \dfrac1{x^5}\right) + \left( x + \dfrac1x \right) .

Pi Han Goh - 4 years, 8 months ago

Log in to reply

Actually I showed the factorization as well that's why there were three more steps to the solution. I think if you already know the equation that you've mentioned, it's fairly short to solve. I stuck to the long form to show how it's factorised.

Tapas Mazumdar - 4 years, 8 months ago

WOW!!! You are really good at factoring.I could never do that.

Razzi Masroor - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...