Sum of inverses is an inverse

Geometry Level 3

sin 1 3 5 + sin 1 8 17 = sin 1 x y \sin^{-1} \dfrac {3}{5}+ \sin^{-1} \dfrac {8}{17}= \sin^{-1} \dfrac {x}{y}

If x x and y y are coprime numbers, evaluate x + y x + y .


The answer is 162.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Karan Pedja
Oct 10, 2015

Let α = sin 1 3 5 , β = sin 1 8 17 \alpha = \sin^ {-1} \frac {3}{5}, \beta = \sin^{-1} \frac {8}{17}

Then sin α = 3 5 \alpha = \frac {3}{5} , cos α = 4 5 \alpha = \frac {4}{5}

and sin β = 8 17 \beta = \frac {8}{17} , cos α = 15 17 \alpha = \frac {15}{17}

Now sin ( α + β ) = s i n α × c o s β + c o s α × s i n β = 3 5 × 15 17 + 4 5 × 8 17 = 45 85 + 32 85 = 77 85 \sin ( \alpha + \beta) = sin \alpha \times cos \beta + cos \alpha \times sin \beta = \frac{3}{5} \times \frac {15}{17} + \frac{4}{5} \times \frac{8}{17} = \frac {45}{85} + \frac{32}{85} = \frac{77}{85}

So sin 1 3 5 + sin 1 8 17 = sin 1 77 85 \sin ^{-1} \frac {3}{5} + \sin ^{-1} \frac {8}{17} = \sin ^{-1} \frac {77}{85}

PS

It should α + β = sin 1 77 85 + 2 k π \alpha + \beta = \sin ^{-1} \frac {77}{85} + 2k \pi

or

α + β = π sin 1 77 85 + 2 k π \alpha + \beta =\pi - \sin ^{-1} \frac {77}{85} + 2k \pi

but, since α , β < π / 4 \alpha, \beta < \pi /4 we know that the above equation holds

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...