Climbing Gauss Hill

A bead of mass m m slides on a smooth wire in the shape of the following curve:

y = e x 2 \large{y = e^{-x^2}}

At time t = 0 t = 0 , the bead is at position x = x 0 x = x_0 with kinetic energy E 0 E_0 , heading toward x = 0 x = 0 . At what time does the bead reach position x = 0 x = 0 ?

Details and Assumptions (all standard SI units):
1) m = 1 m = 1
2) Gravitational acceleration g = 10 g = 10 , in the y -y direction
3) E 0 = 1.01 m g E_0 = 1.01 \, m g
4) x 0 = 2 x_0 = -2


The answer is 0.9213.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jack Ceroni
Aug 19, 2019

We start with the fact that:

E t o t = E 0 + m g y ( x 0 ) = E 0 + m g e x 0 2 E_{tot} \ = \ E_0 \ + \ mg \ y(x_0) \ = \ E_0 \ + \ mge^{-x_0^2} E t o t = 1 2 m v 2 + m g y ( x ) = 1 2 m v 2 + m g e x 2 = E 0 + m g e x 0 2 \Rightarrow E_{tot} \ = \ \frac{1}{2}mv^2 \ + \ mg \ y(x) \ = \ \frac{1}{2}mv^2 \ + \ mg \ e^{-x^2} \ = \ \ E_0 \ + \ mge^{-x_0^2}

Now, let us rearrange the equation to solve for v v :

1 2 m v 2 + m g e x 2 = E 0 + m g e x 0 2 v = 2 g ( E 0 m g + e x 0 2 e x 2 ) \frac{1}{2}mv^2 \ + \ mg \ e^{-x^2} \ = \ \ E_0 \ + \ mge^{-x_0^2} \ \Rightarrow \ v \ = \ \sqrt{2g(\frac{E_0}{mg}\ + \ e^{-x_0^2} - \ e^{-x^2})}

Now, we re-define v v by expanding out the derivative of the curve-length along which our mass is travelling:

( d s d x ) 2 = ( d y d x ) 2 + ( d x d x ) 2 d s d x = ( d y d x ) 2 + 1 \Big( \frac{ds}{dx} \Big)^2 \ = \ \Big( \frac{dy}{dx} \Big)^2 \ + \ \Big( \frac{dx}{dx} \Big)^2 \ \Rightarrow \ \frac{ds}{dx} \ = \ \sqrt{\Big( \frac{dy}{dx} \Big)^2 \ + \ 1} v = d s d t = d s d x d x d t = ( d y d x ) 2 + 1 d x d t = 2 g ( E 0 m g + e x 0 2 e x 2 ) v \ = \ \frac{ds}{dt} \ = \ \frac{ds}{dx} \ \frac{dx}{dt} \ = \ \sqrt{\Big( \frac{dy}{dx} \Big)^2 \ + \ 1} \ \frac{dx}{dt} \ = \ \sqrt{2g(\frac{E_0}{mg} \ + \ e^{-x_0^2} - \ e^{-x^2})}

And then we simply do a bit more re-arranging and substitution:

d y d x = d d x e x 2 = 2 x e x 2 \frac{dy}{dx} \ = \ \frac{d}{dx} \ e^{-x^2} \ = \ -2xe^{-x^2} ( d y d x ) 2 + 1 d x d t = 4 x 2 e 2 x 2 + 1 d x d t = 2 g ( E 0 m g + e x 0 2 e x 2 ) \Rightarrow \ \sqrt{\Big( \frac{dy}{dx} \Big)^2 \ + \ 1} \ \frac{dx}{dt} \ = \ \sqrt{4x^2e^{-2x^2} \ + \ 1} \ \frac{dx}{dt} \ = \ \sqrt{2g(\frac{E_0}{mg} \ + \ e^{-x_0^2} - \ e^{-x^2})} d x d t = 2 g ( E 0 m g + e x 0 2 e x 2 ) 4 x 2 e 2 x 2 + 1 \Rightarrow \ \frac{dx}{dt} \ = \ \sqrt{\frac{2g(\frac{E_0}{mg} \ + \ e^{-x_0^2} - \ e^{-x^2})}{4x^2e^{-2x^2} \ + \ 1}}

Now, we know that if we evaluate the integral of 1 d x d t = d t d x \frac{1}{\frac{dx}{dt}} \ = \ \frac{dt}{dx} from x 0 x_0 to 0 0 , we will get the total time it takes for our mass to climb to the top of the hill!

t = x 0 0 d t d x d x = x 0 0 4 x 2 e 2 x 2 + 1 2 g ( E 0 m g + e x 0 2 e x 2 ) d x = 2 0 4 x 2 e 2 x 2 + 1 20 ( 1.01 + e ( 2 ) 2 e x 2 ) d x t \ = \ \displaystyle\int_{x_0}^{0} \ \frac{dt}{dx} \ dx \ = \ \displaystyle\int_{x_0}^{0} \ \sqrt{\frac{4x^2e^{-2x^2} \ + \ 1}{2g(\frac{E_0}{mg} \ + \ e^{-x_0^2} - \ e^{-x^2})}} \ dx \ = \ \displaystyle\int_{-2}^{0} \ \sqrt{\frac{4x^2e^{-2x^2} \ + \ 1}{20(1.01 \ + \ e^{-(-2)^2} - \ e^{-x^2})}} \ dx

This is a fairly nasty integral, but we can evaluate it numerically to get an answer of t 0.9213374 s t \ \approx \ 0.9213374 \ \text{s} !

Karan Chatrath
Aug 18, 2019

The initial total energy is:

E o + m g y i = E i E_o + mgy_{i} = E_{i}

Where y i = e 4 y_{i} = e^{-4} . The subscript i i denotes 'initial'. This gives:

E i = m g ( 1.01 + e 4 ) E_{i} = mg\left(1.01 + e^{-4}\right)

Now, the coordinates of the bead at any general position are:

r p = ( x , y ) = ( x , e x 2 ) r_p = \left(x,y\right) = \left(x,e^{-x^2}\right)

The kinetic energy of the particle at this instant is:

T = 1 2 m ( x ˙ 2 + y ˙ 2 ) = x ˙ 2 2 ( 1 + 4 x 2 e 2 x 2 ) T = \frac{1}{2}m\left(\dot{x}^2 + \dot{y}^2\right) = \frac{\dot{x}^2}{2}\left(1+4x^2e^{-2x^2}\right)

The potential energy is:

V = m g e x 2 = 10 e x 2 V = mge^{-x^2} = 10e^{-x^2}

Applying conservation of energy:

E i = T + V = x ˙ 2 2 ( 1 + 4 x 2 e 2 x 2 ) + 10 e x 2 E_{i} = T + V = \frac{\dot{x}^2}{2}\left(1+4x^2e^{-2x^2}\right)+10e^{-x^2}

Solving for x ˙ \dot{x} gives an expression of the form:

x ˙ = d x d t = 2 ( E i 10 e x 2 ) ( 1 + 4 x 2 e 2 x 2 ) \dot{x} = \frac{dx}{dt} = \sqrt{\frac{2(E_i - 10e^{-x^2})}{(1+4x^2e^{-2x^2})}}

Therefore y separating the variables and integrating:

t o = 2 0 ( 4 x 2 e 2 x 2 + 1 20 ( e 4 + 101 100 ) 20 e x 2 ) d x t_o = \int_{-2}^{0} \left(\dfrac{\sqrt{4x^2\mathrm{e}^{-2x^2}+1}}{\sqrt{20\left(\mathrm{e}^{-4}+\frac{101}{100}\right)-20\mathrm{e}^{-x^2}}}\right)dx

Numerically integrating gives:

t o = 0.9213 s \boxed{t_o = 0.9213 s}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...