Clued Cube

Algebra Level 3

Find x 2 + y 2 x^2 + y^2 where x x and y y are real numbers satisfying the equations

x ( x 2 3 y 2 ) = 29 x(x^2 - 3y^2) = \sqrt{29} y ( y 2 3 x 2 ) = 35 y(y^2 - 3x^2) = \sqrt{35}


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sathvik Acharya
Jan 10, 2021

x 3 3 x y 2 = 29 x^3-3xy^2=\sqrt{29} y 3 3 x 2 y = 35 y^3-3x^2y=\sqrt{35} Squaring both equations, ( x 3 3 x y 2 ) 2 = x 6 6 x 4 y 2 + 9 x 2 y 4 = 29 (x^3-3xy^2)^2=x^6-6x^4y^2+9x^2y^4=29 ( y 3 3 x 2 y ) 2 = y 6 6 x 2 y 4 + 9 x 4 y 2 = 35 (y^3-3x^2y)^2=y^6-6x^2y^4+9x^4y^2=35 Adding the above equations, ( x 6 6 x 4 y 2 + 9 x 2 y 4 ) + ( y 6 6 x 2 y 4 + 9 x 4 y 2 ) = 29 + 35 x 6 + 3 x 4 y 2 + 3 x 2 y 4 + y 6 = 64 ( x 2 + y 2 ) 3 = 4 3 \begin{aligned} (x^6-6x^4y^2+9x^2y^4)+(y^6-6x^2y^4+9x^4y^2)&=29+35 \\ \\ \implies x^6+3x^4y^2+3x^2y^4+y^6&=64 \\ \\ \implies (x^2+y^2)^3&=4^3 \end{aligned} Therefore, x 2 + y 2 = 64 3 = 4 x^2+y^2=\sqrt[3]{64}=\boxed{4}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...