CM

Calculus Level 4

lim ω 0 ω 6000 ( sin ω ) 6000 ω 2 ( sin ω ) 6000 = ? \large \lim_{\omega\to 0}\frac{\omega^{6000}-(\sin \omega)^{6000}}{\omega^{2}(\sin \omega)^{6000}} = \, ?

6000 1000 1500 500

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishi Sharma
Jun 16, 2016

Relevant wiki: Maclaurin Series

I will do the question for some generalised n instead of 6000.


Let L = lim x 0 x n ( sin x ) n x 2 ( sin x ) n L=\lim _{ x\rightarrow 0 }{ \frac { { x }^{ n }-{ \left( \sin { x } \right) }^{ n } }{ { x }^{ 2 }{ \left( \sin { x } \right) }^{ n } } } Now as x 0 x\rightarrow 0 .We can assume sin x x x 3 6 \sin{x} \approx x-\frac{{x}^{3}}{6} . Using Maclaurin Series of sin x \sin{x} .Substituting it in L L . We get L = lim x 0 x n ( x x 3 6 ) n x 2 ( x x 3 6 ) n L=\lim _{ x\rightarrow 0 }{ \frac { { x }^{ n }-{ \left( x-\frac { { x }^{ 3 } }{ 6 } \right) }^{ n } }{ { x }^{ 2 }{ \left( x-\frac { { x }^{ 3 } }{ 6 } \right) }^{ n } } } Again using the argument that x 0 x \rightarrow 0 we can use binomial approximation and write ( x x 3 6 ) n = x n ( 1 n x 2 6 ) { \left( x-\frac { { x }^{ 3 } }{ 6 } \right) }^{ n }={ x }^{ n }\left( 1-\frac { n{ x }^{ 2 } }{ 6 } \right) Substituting it in L L and doing some basic manipulations we get L = lim x 0 x n + 2 ( n 6 ) x n + 2 ( 1 n x 2 6 ) = n 6 L=\lim _{ x\rightarrow 0 }{ \frac { { x }^{ n+2 }\left( \frac { n }{ 6 } \right) }{ { x }^{ n+2 }\left( 1-\frac { n{ x }^{ 2 } }{ 6 } \right) } } =\frac { n }{ 6 } Now putting n = 6000 n=6000 we get L = 6000 6 = 6 L=\frac { 6000 }{ 6 } =\boxed6

Moderator note:

A much better (and more rigorous) way to express your solution is to use the Big-O notation directly. IE

L = lim x 0 x n ( sin x ) n x 2 ( sin x ) n = lim x 0 x n + 2 ( n 6 ) + O ( x n + 4 ) x n + 2 ( 1 n x 2 6 ) + O ( x n + 3 ) . L=\lim _{ x\rightarrow 0 }{ \frac { { x }^{ n }-{ \left( \sin { x } \right) }^{ n } }{ { x }^{ 2 }{ \left( \sin { x } \right) }^{ n } } } =\lim _{ x\rightarrow 0 }{ \frac { { x }^{ n+2 }\left( \frac { n }{ 6 } \right) + O(x^{n+4}) }{ { x }^{ n+2 }\left( 1-\frac { n{ x }^{ 2 } }{ 6 } \right) + O(x^{n+3}) } } .

This justifies why we can use the approximation of sin x \sin x and the binomial approximation.

Brilliant! . and thanks for generalisation :)

Prakhar Bindal - 4 years, 12 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...