lo g 2 x + lo g 8 x + lo g 6 4 x = lo g x 2 + lo g x 1 6 + lo g x 1 2 8
Let x be a real number satisfying the equation above.
If the value of lo g 2 x + lo g x 2 can be expressed as c a b , where a and c are coprime positive integers and b is square-free, compute a b c .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Typo: 3 1 lo g 2 x
When you went from 2 3 lo g 2 x = 1 2 lo g x 2 to lo g 2 x = 2 2 , you omitted the other possible solution lo g 2 x = − 2 2 .
Log in to reply
The question stated that a and c are coprime positive integers
Log in to reply
Right, and this means the problem is incomplete. The problem should acknowledge the existence of two different possible values of x .
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Logarithms
lo g 2 x + lo g 8 x + lo g 6 4 x = lo g x 2 + lo g x 1 6 + lo g x 1 2 8 lo g 2 x + 3 1 lo g 2 x + 6 1 lo g 2 x = lo g x 2 + 4 lo g x 2 + 7 lo g x 2 2 3 lo g 2 x = 1 2 lo g x 2 lo g 2 x = 2 2 (Why not − 2 2 ? ) lo g 2 x + lo g x 2 = 2 2 + 2 2 1 ⟹ 4 9 2 In comparison a = 9 , b = 2 , c = 4 a b c = 7 2