CMIMC 2017

Algebra Level 4

x y = x y x + y \large x \otimes y=\frac{xy}{x+y}

The equation above is defined for some real numbers x x and y y . Find

2 1 ( 2 2 ( 2 3 ( 2 2016 2 2017 ) ) ) \left \lfloor 2^{1}\otimes\left(2^{2}\otimes\left(2^{3}\otimes \cdots \otimes \left(2^{2016} \otimes 2^ {2017} \right) \right) \right)\right \rfloor

Notation: \lfloor \cdot \rfloor denotes the floor function.


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Swagat Panda
Jun 20, 2017

The operation given in the question basically finds the reciprocal of the sum of reciprocal of the numbers being operated upon, that is x y = 1 1 x + 1 y x\otimes y=\dfrac{1}{\dfrac{1}{x}+\dfrac{1}{y}}

Now operating from the innermost brackets of the problem we have: 2 2016 2 2017 = 2 2016 . 2 2017 2 2016 + 2 2017 = 2 2017 3 = 2 2017 1 + 2 2^{2016} \otimes 2^{2017}= \dfrac{2^{2016}.2^{2017}}{2^{2016}+2^{2017}}= \dfrac{2^{2017}}{3}=\dfrac{2^{2017}}{1+2}

Further: 2 2015 2 2017 3 = 2 2015 . 2 2017 3 2 2015 + 2 2017 3 = 2 2017 7 = 2 2017 1 + 2 + 4 2^{2015} \otimes \dfrac{2^{2017}}{3}= \dfrac{2^{2015}.\dfrac{2^{2017}}{3}}{2^{2015}+\dfrac{2^{2017}}{3}}= \dfrac{2^{2017}}{7}= \dfrac{2^{2017}}{1+2+4}

In general we can say that the n t h n^{th} term for the series of operations 2 1 ( 2 2 ( 2 3 . . . ( 2 n 1 2 n ) ) ) 2^{1}*\otimes (2^{2}\otimes (2^{3}\otimes...\otimes(2^{n-1}\otimes 2^{n}))) would yield the result 2 n r = 0 n 1 2 r = 2 n 2 n 1 \dfrac{2^{n}}{\displaystyle{\sum_{r=0}^{n-1} {2^{r}}} } = \dfrac{2^{n}}{2^{n}-1}

Hence for the given problem : 2 1 ( 2 2 ( 2 3 . . . ( 2 2016 2 2017 ) ) ) = 2 2017 2 2017 1 = 1 1 1 2 2017 = 1 \left \lfloor 2^{1} \otimes (2^{2}\otimes(2^{3}\otimes... \otimes(2^{2016}\otimes 2^{2017})))\right \rfloor=\left \lfloor \dfrac{2^{2017}}{2^{2017}-1} \right\rfloor= \left \lfloor \dfrac{1}{1-\dfrac{1}{2^{2017}}} \right \rfloor=\boxed{1}

Chew-Seong Cheong
Jun 21, 2017

Note that x y = x y x + y = 1 1 x + 1 y x \otimes y = \dfrac {xy}{x+y} = \dfrac 1{\frac 1x+\frac 1y} . Then we have:

X = 2 1 ( 2 2 ( 2 3 ( 2 2016 2 2017 ) ) ) = 2 1 ( 2 2 ( 2 3 ( 2 2015 ( 1 1 2 2016 + 1 2 2017 ) ) ) ) = 2 1 ( 2 2 ( 2 3 ( 2 2014 ( 1 1 2 2015 + 1 2 2016 + 1 2 2017 ) ) ) ) = 2 1 ( 2 2 ( 2 3 ( 2 2013 ( 1 1 2 2014 + 1 2 2015 + 1 2 2016 + 1 2 2017 ) ) ) ) = = 1 n = 1 2017 ( 1 2 ) n = 1 1 2 ( 1 1 2 2017 1 1 2 ) = 2 2017 2 2017 1 \begin{aligned} X & = 2^1 \otimes \left(2^2 \otimes \left(2^3 \otimes \cdots \otimes \left(2^{2016} \otimes 2^{2017} \right) \right) \right) \\ & = 2^1 \otimes \left(2^2 \otimes \left(2^3 \otimes \cdots \otimes \left(2^{2015} \otimes \left(\frac 1{\frac 1{2^{2016}} + \frac 1{2^{2017}}} \right) \right) \right)\right) \\ & = 2^1 \otimes \left(2^2 \otimes \left(2^3 \otimes \cdots \otimes \left(2^{2014} \otimes \left(\frac 1{\frac 1{2^{2015}} + \frac 1{2^{2016}} + \frac 1{2^{2017}}} \right) \right) \right)\right) \\ & = 2^1 \otimes \left(2^2 \otimes \left(2^3 \otimes \cdots \otimes \left(2^{2013} \otimes \left(\frac 1{\frac 1{2^{2014}} + \frac 1{2^{2015}} + \frac 1{2^{2016}} + \frac 1{2^{2017}}} \right) \right) \right)\right) \\ & = \ \cdots \\ & = \frac 1{\displaystyle \sum_{n=1}^{2017} \left(\frac 12\right)^n} = \frac 1{\frac 12 \left(\frac {1-\frac 1{2^{2017}}}{1-\frac 12} \right)} = \frac {2^{2017}}{2^{2017}-1} \end{aligned}

X = 2 2017 2 2017 1 = 1 \implies \lfloor X \rfloor = \left \lfloor \dfrac {2^{2017}}{2^{2017}-1} \right \rfloor = \boxed{1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...