Find the co-ordinates of the circumcenter of the triangle having co-ordinates of its vertices as .
Submit your answer as the sum if the -coordinate and -coordinate of the circumcentre.
Give your answer up to 2 decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The circumcentre is the point of intersection of the perpendicular bisectors.
Let ( − 2 , − 6 ) be point A, ( 4 , 2 ) be point B and ( 6 , 0 ) be point C.
Midpoint of AC = ( 2 − 2 + ( − 6 ) , 2 − 6 + 0 ) = ( 2 , − 3 )
Slope of AC = 6 − ( − 2 ) 0 − ( − 6 ) = 4 3
Slope of perpendicular bisector of AC = 4 3 − 1 = − 3 4
Equation of perpendicular bisector of AC:-
m = x − x 1 y − y 1 − 3 4 = x − 2 y − ( − 3 ) − 4 ( x − 2 ) = 3 ( y + 3 ) 4 x + 3 y = − 1 ⟶ 1
Midpoint of AB = ( 2 4 + ( − 2 ) , 2 2 + ( − 6 ) ) = ( 1 , − 2 )
Slope of AB = 4 − ( − 2 ) 2 − ( − 6 ) = 3 4
Slope of perpendicular bisector of AC = 3 4 − 1 = − 4 3
Equation of perpendicular bisector of AC:-
m = x − x 2 y − y 2 − 4 3 = x − 1 y − ( − 2 ) − 3 ( x − 1 ) = 4 ( y + 2 ) 3 x + 4 y = − 5 ⟶ 2
Multiplying 1 by 3 and 2 by 4, we get:-
1 2 x + 9 y = − 3 ⟶ 3 1 2 x + 1 6 y = − 2 0 ⟶ 4
Subtracting 4 from 3 , we get:-
− 7 y = 1 7 y = − 7 1 7 y = − 2 . 4 2
Substituting y = − 7 1 7 in 3 , we get:-
1 2 x + 9 × − 7 1 7 = − 3 1 2 x − 7 1 5 3 = − 3 1 2 x = − 3 + 7 1 5 3 1 2 x = 7 − 2 1 + 1 5 3 1 2 x = 7 1 3 2 x = 1 4 1 3 2 x = 1 . 5 7
So, co-ordinates of circumcentre = ( x , y ) = ( 1 . 5 7 , − 2 . 4 2 )
So, x + y = 1 . 5 7 + ( − 2 . 4 2 ) = − 0 . 8 6