coccassi function algebra

Algebra Level 4

x + y = 5 x y y + z = 6 y z z + x = 7 z x x + y = 5 xy \\ y + z = 6yz \\ z + x = 7 z x

If x y z 0 xyz \neq 0 , then the value of x + y + z x+y+z can be expressed as a b \frac{a}{b} , where a a and b b are positive coprime integers. What is a + b a+b ?


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Sean Ty
Jul 2, 2014

In the first equation, we divide both sides by x y xy . Yielding

1 x + 1 y = 5 \dfrac{1}{x}+\dfrac{1}{y}=5 .

Doing the same thing to the other equations give:

1 y + 1 z = 6 \dfrac{1}{y}+\dfrac{1}{z}=6 and

1 z + 1 x = 7 \dfrac{1}{z}+\dfrac{1}{x}=7

For equations 2 and 3, respectively.

Adding our new equations, we get

1 x + 1 y + 1 z = 9 \dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=9

Subtracting 1 x + 1 y = 5 \dfrac{1}{x}+\dfrac{1}{y}=5 from the new equation yields

1 z = 4 \dfrac{1}{z}=4 .

Doing the same thing to x x and y y , we get:

1 x = 3 \dfrac{1}{x}=3 , and

1 y = 2 \dfrac{1}{y}=2 .

Now we know that x = 1 3 x=\dfrac{1}{3} , y = 1 2 y=\dfrac{1}{2} , and z = 1 4 z=\dfrac{1}{4} ,

x + y + z = 13 12 x+y+z=\dfrac{13}{12} ,

And 13 + 12 = 25 13+12=\boxed{25}

Nice. Congratulations. Your use of 1/x+1/y+1/z = 9 is realy very nice.

Niranjan Khanderia - 6 years, 11 months ago

Exactly the same way.

Kushagra Sahni - 6 years, 9 months ago

Same method.

Vinit Béléy - 6 years, 8 months ago

this is much easier and clever than what i did ........ thanks :)

Abhinav Raichur - 6 years, 11 months ago
Joram Otero
Jul 1, 2014

x + y = 5 x y s o l v e x i n t e r m s o f y x + y x y = 5 1 y + 1 x = 5 1 x = 5 1 y x = y 5 y 1 ( 1 ) d o t h e s a m e a t y + z = 6 y z s o l v e z i n t e r m s o f y , w e c a n g e t z = y 6 y 1 ( 2 ) t h e n s u b s t i t u t e ( 1 ) a n d ( 2 ) t o t h e 3 r d g i v e n e q u a t i o n z + x = 7 z x y 6 y 1 + y 5 y 1 = 7 ( y 6 y 1 ) ( y 5 y 1 ) y = 0.5 t h e n s u b s t i t u t e t h e v a l u e o f y t o e q u a t i o n ( 1 ) a n d ( 2 ) t o g e t t h e v a l u e o f x a n d z x = 1 3 a n d z = 1 4 t h e n a d d x , y , z x + y + z = 13 12 t h e r e f o r e t h e a n s w e r w i l l b e 13 + 12 = 25 x+y=5xy\\ solve\quad x\quad in\quad terms\quad of\quad y\\ \frac { x+y }{ xy } =5\\ \frac { 1 }{ y } +\frac { 1 }{ x } =5\\ \frac { 1 }{ x } =5-\frac { 1 }{ y } \\ x=\frac { y }{ 5y-1 } \longrightarrow \quad \left( 1 \right) \\ \\ do\quad the\quad same\quad at\quad y+z=6yz\\ solve\quad z\quad in\quad terms\quad of\quad y,\quad we\quad can\quad get\\ z=\frac { y }{ 6y-1 } \longrightarrow \quad \left( 2 \right) \\ \\ then\quad substitute\quad (1)\quad and\quad (2)\quad to\quad the\quad 3rd\quad given\quad equation\\ z+x=7zx\\ \frac { y }{ 6y-1 } +\frac { y }{ 5y-1 } =7\left( \frac { y }{ 6y-1 } \right) \left( \frac { y }{ 5y-1 } \right) \\ \\ y=0.5\\ \\ then\quad substitute\quad the\quad value\quad of\quad y\quad to\quad equation\quad (1)\quad and\quad (2)\quad to\quad get\quad the\quad value\quad of\quad x\quad and\quad z\\ x=\frac { 1 }{ 3 } \quad and\quad z=\frac { 1 }{ 4 } \quad \\ then\quad add\quad x,y,z\\ x+y+z\quad =\quad \frac { 13 }{ 12 } \\ therefore\quad the\quad answer\quad will\quad be\quad 13+12\quad =\quad 25

thanks man

edmund letaba - 6 years, 11 months ago

Good method.

Niranjan Khanderia - 6 years, 11 months ago

Multiply first equation by x x :

z x + z y = 5 x y z zx+zy=5xyz

Similarly:

x y + x z = 6 x y z xy+xz=6xyz

y z + y x = 7 x y z yz+yx=7xyz

Summing the three equations we get:

x z + z y + x y = 9 x y z xz+zy+xy=9xyz

Subtracting equation 1 we obtain x y = 4 x y z xy=4xyz , then z = 1 4 z=\frac{1}{4}

Similarly, by subtracting equations 2 and 3 from equation 4, respectively, we get x = 1 3 x=\frac{1}{3} and y = 1 2 y=\frac{1}{2} .

Summing up, x + y + z = 13 12 x+y+z=\frac{13}{12} , so the answer is 25

Ankush Gogoi
Jul 1, 2014

x+y=5xy...divide both sides by xy giving 1/x + 1/y = 5...similarly 1/y + 1/z =6 & 1/x +1/z = 7...now let 1/x=a,1/y=b & 1/z =c...so the new equations are a+b=5 , b+c=6 & c+a=7...three equations and three unknowns solve it.finally a=3 gives 1/x = 3 so x=1/3.similarly y =1/2 & z=1/4

Jai Gupta
Jul 1, 2014

There are 3 equation and 3 variable
Minus first and second equation put the relationship in first

Then question will be solved If you have problem please comment

Can you add more details to make your solution complete? At least indicate what happens when you subtract the two equations.

Calvin Lin Staff - 6 years, 11 months ago

Log in to reply

please see my solution. thanks!

joram otero - 6 years, 11 months ago

Ohh sorry sir next time Iwill do that

Jai Gupta - 6 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...