Determine the value of 1 0 0 ∫ 0 π 1 + sin x d x .
This problem is proposed by Cody .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Everything in this question is fine except that the link at "Cody" takes you to "JImmy" L O L
nice way ! thanks :)
nice..........
We know that if f ( x ) = f ( 2 a − x ) ,
∫ 0 2 a f ( x ) d x = 2 ∫ 0 a f ( x ) d x
Hence, ∫ 0 π 1 + sin x d x
= 2 ∫ 0 2 π 1 + sin x d x
Substituting x = sin − 1 t ,
we get d x = 1 − t 2 d t
Hence we get ∫ 0 1 2 1 − t 2 1 + t d t = 2 ∫ 0 1 1 − t d t = 4
Hence, multiplying by 1 0 0 , we get 4 0 0
We can write 1+ sin x as sin^2 (x/2) + cos^2(x/2) + 2.sin(x/2)cos(x/2) now, sqrt{sin^2 (x/2) + cos^2(x/2) + 2.sin(x/2)cos(x/2)} = sin(x/2)+ cos(x/2) This will give 0
Where did I go wrong please help me
Log in to reply
You are missing to put modulus.
( sin ( 2 x ) + cos ( 2 x ) ) 2 = ∣ sin ( 2 x ) + cos ( 2 x ) ∣ .
The indefinite integral answer is sinx/2 - cosx/2 ( bcoz integral of sinx is -cosx)
hmm
sinx=cos(90-x); 1+cos(90-x) =2cos^2((90-x)/2)==>integral of sqrt(2)cos(45-x/2)dx needs to be evaluated which can be easily found.
(1+sinx)^1/2=(sin^2x/2+cos^x/2+2sinx/2*cosx/2)^2 =[(sinx/2+cosx/2)^2]^1/2 =sinx/2+cosx/2 then by applying integral on both sides ANS=400
Most Easy way to solve.......................................
Let I = ∫ 0 π 1 + sin x d x and note that 2 1 I = ∫ 0 π / 2 1 + sin x d x = ∫ π / 2 π 1 + sin x d x by symmetry.
Then,
∫ 0 π / 2 1 + sin x d x = ∫ 0 π / 2 1 + sin x ⋅ 1 − sin x 1 − sin x d x = ∫ 0 π / 2 1 − sin x ∣ c o s x ∣ d x .
Since cos x ≥ 0 on [ 0 , π / 2 ] , ∣ cos x ∣ = cos x there and so the substitution u = sin x turns the above integral into ∫ 0 1 ( 1 − u ) − 1 / 2 d u = 2 .
So we find that I / 2 = 2 . This gives I = 4 , so 1 0 0 I = 4 0 0 is our answer.
Another method Substitute sin θ = 1 + tan 2 2 θ 2 tan 2 θ Then \int { \sqrt { 1+\quad \frac { 2\tan { \frac { \theta }{ 2 } } }{ 1+\tan ^{ 2 }{ \frac { \theta }{ 2 } } } } } d\theta \quad =\quad \int { \frac { \sqrt { { \left( 1+\tan { \frac { \theta }{ 2 } } \right) }^{ 2 } } }{ \sec { \frac { \theta }{ 2 } } } } d\theta \\ \Longrightarrow \quad =\quad \int { \frac { 1+\tan { \frac { \theta }{ 2 } } }{ \sec { \frac { \theta }{ 2 } } } d\theta } =\quad \int { \cos { \frac { \theta }{ 2 } } +\sin { \frac { \theta }{ 2 } } } d\theta \\ \Longrightarrow \quad =\quad { 2\left[ \sin { \frac { \theta }{ 2 } } -\cos { \frac { \theta }{ 2 } } \right] }_{ 0 }^{ \Pi }\quad =\quad 4\\ Hence,\quad 100\quad \times \quad 4\quad =\quad 400
we know that sin(x)=2 sin(x/2) cos(x/2) so
1+sin(x)=1+2 sin(x/2) cos(x/2 ) = sin(x/2)^2 + cos(x/2)^2 + 2 sin(x/2) cos(x/2)
={ sin(x/2) + cos (x/2) }^2
rest we know how to proceed.......................
sqrt(1+sinx)=sqrt((sinx)^2+(cosx)^+2sinx cosx)=sin(x/2)+cos(x/2) now integrating sin(x/2)+cos(x/2) from limit 0 to pi we get 2 200*2=400 (ans)
We will begin by attempting a substitution:
u = 1 + sin x
d u = cos x d x
No cosine can be found in the integral so we will multiply by cos x cos x :
1 0 0 ∫ 0 π cos x cos x 1 + sin x d x
Next we recall that:
sin 2 x + cos 2 x = 1
We also note that when 0 < x < 2 π :
c o s x > 0
And when 2 π < x < π :
c o s x < 0
Thus, when 0 < x < 2 π :
c o s x = 1 − sin 2 x
And when 2 π < x < π :
c o s x = − 1 − sin 2 x
Then we split the integral accordingly and substitute:
1 0 0 ∫ 0 2 π cos x cos x 1 + sin x d x + 1 0 0 ∫ 2 π π cos x cos x 1 + sin x d x
= 1 0 0 ∫ 0 2 π 1 − sin 2 x cos x 1 + sin x d x + 1 0 0 ∫ 2 π π − 1 − sin 2 x cos x 1 + sin x d x
= 1 0 0 ∫ 1 2 1 − ( u − 1 ) 2 u d u − 1 0 0 ∫ 2 1 1 − ( u − 1 ) 2 u d u
We note that by flipping the limits on the right integral, we can negate that integral and add the two integrals together:
2 0 0 ∫ 1 2 1 − ( u − 1 ) 2 u d u
= 2 0 0 ∫ 1 2 2 − u 1 d u
Lastly, we can take the anti-derivative and simplify:
2 0 0 ( − 2 2 − u ) ∣ ∣ ∣ ∣ 1 2
= − 4 0 0 ( 2 − 2 − 2 − 1 )
= − 4 0 0 ( − 1 )
= 4 0 0
Problem Loading...
Note Loading...
Set Loading...
We use the property
∫ 0 2 a f ( x ) d x = 2 ∫ 0 a f ( x ) d x
This is true when the function is even about a i.e.
f ( a + x ) = f ( a − x ) x ∈ [ 0 , a ]
So, our integral becomes
2 ∫ 0 2 π 1 + sin x d x
We also use the property that
∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x
Now we can write the integral as
2 ∫ 0 2 π 1 + sin ( 2 π − x ) d x
Now, we use
sin ( 2 π − x ) = cos x
And
1 + cos x = 2 cos 2 2 x
Now, our integral becomes
2 2 ∫ 0 2 π cos ( 2 x ) d x
⇒ 4 2 sin 2 x ∣ 0 2 π
⇒ 4
But the question requires us to find 1 0 0 times the integral.
So the answer is 4 0 0