Cody's calculus question

Calculus Level 3

Determine the value of 100 0 π 1 + sin x d x 100 \int_0^{\pi} \sqrt{ 1 + \sin x} \, dx .

This problem is proposed by Cody .


The answer is 400.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

8 solutions

Krishna Jha
Dec 16, 2013

We use the property

0 2 a f ( x ) d x = 2 0 a f ( x ) d x \LARGE \int_0^{2a} f(x)\mathrm{d}x=2 \int_0^{a} f(x)\mathrm{d}x

This is true when the function is even about a a i.e.

f ( a + x ) = f ( a x ) \LARGE f(a+x)=f(a-x) x [ 0 , a ] x\in [0,a]

So, our integral becomes

2 0 π 2 1 + sin x d x \LARGE 2\int_0^\frac{\pi}{2} \sqrt{1+\sin{x}}\mathrm{d}x

We also use the property that

a b f ( x ) d x = a b f ( a + b x ) d x \LARGE \int_a^{b} f(x)\mathrm{d}x=\int_a^{b} f(a+b-x)\mathrm{d}x

Now we can write the integral as

2 0 π 2 1 + sin ( π 2 x ) d x \LARGE 2\int_0^\frac{\pi}{2} \sqrt{1+\sin({\frac{\pi}{2}-x})}\mathrm{d}x

Now, we use

sin ( π 2 x ) = cos x \LARGE \sin ({\frac{\pi}{2}-x})=\cos x

And

1 + cos x = 2 cos 2 x 2 \LARGE 1+\cos x=2\cos^{2}\frac{x}{2}

Now, our integral becomes

2 2 0 π 2 cos ( x 2 ) d x \LARGE 2\sqrt{2}\int_0^\frac{\pi}{2} \cos(\frac{x}{2})\mathrm{d}x

4 2 sin x 2 0 π 2 \LARGE \Rightarrow4 \sqrt{2} \sin \frac{x}{2}\mid_0^\frac{\pi}{2}

4 \LARGE \Rightarrow 4

But the question requires us to find 100 100 times the integral.

So the answer is 400 \boxed{400}

Everything in this question is fine except that the link at "Cody" takes you to "JImmy" L O L \color{#D61F06}{LOL}

Aditya Raut - 6 years, 10 months ago

nice way ! thanks :)

Peace Trap - 7 years, 4 months ago

nice..........

Harshita Jain - 7 years, 3 months ago
Jatin Yadav
Dec 14, 2013

We know that if f ( x ) = f ( 2 a x ) f(x) = f(2a -x) ,

0 2 a f ( x ) d x = 2 0 a f ( x ) d x \displaystyle \int_{0}^{2a} f(x) dx = 2\int_{0}^{a} f(x) dx

Hence, 0 π 1 + sin x d x \displaystyle \int_{0}^{\pi} \sqrt{1 + \sin x} dx

= 2 0 π 2 1 + sin x d x 2 \displaystyle \int_{0}^{\frac{\pi}{2}} \sqrt{1+\sin x} dx

Substituting x = sin 1 t , x = \sin^{-1} t,

we get d x = d t 1 t 2 dx = \frac{dt}{\sqrt{1-t^2}}

Hence we get 0 1 2 1 + t 1 t 2 d t = 2 0 1 d t 1 t = 4 \displaystyle \int_{0}^{1} 2\frac{\sqrt{1+t}}{\sqrt{1-t^2}} dt = 2\int_{0}^{1} \frac{dt}{\sqrt{1-t}} = 4

Hence, multiplying by 100 100 , we get 400 400

We can write 1+ sin x as sin^2 (x/2) + cos^2(x/2) + 2.sin(x/2)cos(x/2) now, sqrt{sin^2 (x/2) + cos^2(x/2) + 2.sin(x/2)cos(x/2)} = sin(x/2)+ cos(x/2) This will give 0

Where did I go wrong please help me

Manoj Bhat - 7 years, 6 months ago

Log in to reply

You are missing to put modulus.

( sin ( x 2 ) + cos ( x 2 ) ) 2 = sin ( x 2 ) + cos ( x 2 ) \sqrt{ (\sin (\frac{x}{2}) + \cos(\frac{x}{2}))^2} = |\sin (\frac{x}{2}) + \cos(\frac{x}{2})| .

jatin yadav - 7 years, 5 months ago

The indefinite integral answer is sinx/2 - cosx/2 ( bcoz integral of sinx is -cosx)

PrithiPal Singh - 7 years, 3 months ago

hmm

Jncy Rana - 7 years, 5 months ago

sinx=cos(90-x); 1+cos(90-x) =2cos^2((90-x)/2)==>integral of sqrt(2)cos(45-x/2)dx needs to be evaluated which can be easily found.

Priyesh Pandey - 7 years, 2 months ago
Arun Silveru
Dec 26, 2013

(1+sinx)^1/2=(sin^2x/2+cos^x/2+2sinx/2*cosx/2)^2 =[(sinx/2+cosx/2)^2]^1/2 =sinx/2+cosx/2 then by applying integral on both sides ANS=400

Most Easy way to solve.......................................

Ravinder Patel - 7 years, 1 month ago
Theo Coyne
Jul 2, 2015

Let I = 0 π 1 + sin x d x I=\int_0^\pi\sqrt{1+\sin x}dx and note that 1 2 I = 0 π / 2 1 + sin x d x = π / 2 π 1 + sin x d x \frac{1}{2}I=\int_0^{\pi/2}\sqrt{1+\sin x} dx=\int_{\pi/2}^\pi\sqrt{1+\sin x} dx by symmetry.

Then,

0 π / 2 1 + sin x d x = 0 π / 2 1 + sin x 1 sin x 1 sin x d x = 0 π / 2 c o s x 1 sin x d x . \int_0^{\pi/2}\sqrt{1+\sin x} dx=\int_0^{\pi/2}\sqrt{1+\sin x}\cdot\frac{\sqrt{1-\sin x}}{\sqrt{1-\sin x}} dx=\int_0^{\pi/2} \frac{|cos x|}{\sqrt{1-\sin x}} dx.

Since cos x 0 \cos x\geq 0 on [ 0 , π / 2 ] [0,\pi/2] , cos x = cos x |\cos x|=\cos x there and so the substitution u = sin x u=\sin x turns the above integral into 0 1 ( 1 u ) 1 / 2 d u = 2 \int_0^1 (1-u)^{-1/2} du=2 .

So we find that I / 2 = 2 I/2=2 . This gives I = 4 I=4 , so 100 I = 400 100I=400 is our answer.

Rishabh Chhabda
Apr 29, 2014

Another method Substitute sin θ = 2 tan θ 2 1 + tan 2 θ 2 \sin { \theta } =\quad \frac { 2\tan { \frac { \theta }{ 2 } } }{ 1+\tan ^{ 2 }{ \frac { \theta }{ 2 } } } Then \int { \sqrt { 1+\quad \frac { 2\tan { \frac { \theta }{ 2 } } }{ 1+\tan ^{ 2 }{ \frac { \theta }{ 2 } } } } } d\theta \quad =\quad \int { \frac { \sqrt { { \left( 1+\tan { \frac { \theta }{ 2 } } \right) }^{ 2 } } }{ \sec { \frac { \theta }{ 2 } } } } d\theta \\ \Longrightarrow \quad =\quad \int { \frac { 1+\tan { \frac { \theta }{ 2 } } }{ \sec { \frac { \theta }{ 2 } } } d\theta } =\quad \int { \cos { \frac { \theta }{ 2 } } +\sin { \frac { \theta }{ 2 } } } d\theta \\ \Longrightarrow \quad =\quad { 2\left[ \sin { \frac { \theta }{ 2 } } -\cos { \frac { \theta }{ 2 } } \right] }_{ 0 }^{ \Pi }\quad =\quad 4\\ Hence,\quad 100\quad \times \quad 4\quad =\quad 400

Ravinder Patel
Apr 28, 2014

we know that sin(x)=2 sin(x/2) cos(x/2) so

1+sin(x)=1+2 sin(x/2) cos(x/2 ) = sin(x/2)^2 + cos(x/2)^2 + 2 sin(x/2) cos(x/2)

={ sin(x/2) + cos (x/2) }^2

rest we know how to proceed.......................

Masba Islam
Mar 3, 2014

sqrt(1+sinx)=sqrt((sinx)^2+(cosx)^+2sinx cosx)=sin(x/2)+cos(x/2) now integrating sin(x/2)+cos(x/2) from limit 0 to pi we get 2 200*2=400 (ans)

Eric Winsor
Feb 15, 2014

We will begin by attempting a substitution:

u = 1 + sin x u=1+\sin{x}

d u = cos x d x \mathrm{d}u=\cos{x}\mathrm{d}x

No cosine can be found in the integral so we will multiply by cos x cos x \frac{\cos{x}}{\cos{x}} :

100 0 π cos x 1 + sin x cos x d x 100\int_0^\pi\frac{\cos{x}\sqrt{1+\sin{x}}}{\cos{x}}\,\mathrm{d}x

Next we recall that:

sin 2 x + cos 2 x = 1 \sin^2{x}+\cos^2{x}=1

We also note that when 0 < x < π 2 0<x<\frac{\pi}{2} :

c o s x > 0 cos{x}>0

And when π 2 < x < π \frac{\pi}{2}<x<\pi :

c o s x < 0 cos{x}<0

Thus, when 0 < x < π 2 0<x<\frac{\pi}{2} :

c o s x = 1 sin 2 x cos{x}=\sqrt{1-\sin^2{x}}

And when π 2 < x < π \frac{\pi}{2}<x<\pi :

c o s x = 1 sin 2 x cos{x}=-\sqrt{1-\sin^2{x}}

Then we split the integral accordingly and substitute:

100 0 π 2 cos x 1 + sin x cos x d x + 100 π 2 π cos x 1 + sin x cos x d x 100\int_0^\frac{\pi}{2}\frac{\cos{x}\sqrt{1+\sin{x}}}{\cos{x}}\,\mathrm{d}x+100\int_\frac{\pi}{2}^\pi\frac{\cos{x}\sqrt{1+\sin{x}}}{\cos{x}}\,\mathrm{d}x

= 100 0 π 2 cos x 1 + sin x 1 sin 2 x d x + 100 π 2 π cos x 1 + sin x 1 sin 2 x d x =100\int_0^\frac{\pi}{2}\frac{\cos{x}\sqrt{1+\sin{x}}}{\sqrt{1-\sin^2{x}}}\,\mathrm{d}x+100\int_\frac{\pi}{2}^\pi\frac{\cos{x}\sqrt{1+\sin{x}}}{-\sqrt{1-\sin^2{x}}}\,\mathrm{d}x

= 100 1 2 u 1 ( u 1 ) 2 d u 100 2 1 u 1 ( u 1 ) 2 d u =100\int_1^2\frac{\sqrt{u}}{\sqrt{1-(u-1)^2}}\,\mathrm{d}u-100\int_2^1\frac{\sqrt{u}}{\sqrt{1-(u-1)^2}}\,\mathrm{d}u

We note that by flipping the limits on the right integral, we can negate that integral and add the two integrals together:

200 1 2 u 1 ( u 1 ) 2 d u 200\int_1^2\frac{\sqrt{u}}{\sqrt{1-(u-1)^2}}\,\mathrm{d}u

= 200 1 2 1 2 u d u =200\int_1^2\frac{1}{\sqrt{2-u}}\,\mathrm{d}u

Lastly, we can take the anti-derivative and simplify:

200 ( 2 2 u ) 1 2 200(-2\sqrt{2-u})\bigg\rvert_1^2

= 400 ( 2 2 2 1 ) =-400(\sqrt{2-2} - \sqrt{2-1})

= 400 ( 1 ) =-400(-1)

= 400 =\boxed{400}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...