But I Can't Expand So Many Terms!

Consider the polynomial P ( x ) = k = 0 10 ( x 2 k + 2 k ) \displaystyle P\left( x \right) =\Large{\prod _{ k=0 }^{ 10 }{ ({ x }^{ { 2 }^{ k } }+{ 2 }^{ k })} }

The coefficient of x 2016 { x }^{ 2016 } is equal to 2 m { 2 }^{ m } . What is the value of m m ?

Bonus : For P ( x ) = k = 0 n ( x 2 k + 2 k ) \displaystyle P(x)=\prod _{ k=0 }^{ n }{ ({ x }^{ { 2 }^{ k } }+{ 2 }^{ k }) } , generalize the coefficient of x q { x }^{ q } , with 0 q 2 n + 1 1 0\le q\le { 2 }^{ n+1 }-1 .

8 10 12 14 16 18 20

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

If 0 q 2 n + 1 1 0\le q\le { 2 }^{ n+1 }-1 and n = j A 2 j n={ \sum { _{ j\in A }^{ }{ { 2 }^{ j } } } } for A { 0 , 1 , 2 , . . . , n } A\subseteq \left\{ 0,\quad 1,\quad 2,\quad ...\quad ,\quad n \right\} , the coefficient of x q { x }^{ q } is 2 m { 2 }^{ m } , where m = ( n + 1 2 ) j A j m=\left( \begin{matrix} n+1 \\ 2 \end{matrix} \right) -\sum { _{ j\in A }^{ }{ j } } .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...