Coefficient of x 2 x^2

Let C \color{#EC7300}{C} be the coefficient of x 2 \color{#20A900}{x^2} in ( 1 x ) ( 1 + 2 x ) ( 1 3 x ) ( 1 + 4 x ) ( 1 + 14 x ) ( 1 15 x ) \color{#69047E}{(1-x)(1+2x)(1-3x)(1+4x)\cdots (1+14x)(1-15x)} . Find C \color{#EC7300}{|C|} .

[2004 AIME 1 Problem 7]


The answer is 588.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Patrick Corn
Jan 4, 2018

Let y y be the polynomial. Then ln ( y ) = ln ( 1 x ) + ln ( 1 + 2 x ) + + ln ( 1 15 x ) y y = 1 1 x + 2 1 + 2 x 15 1 15 x . \begin{aligned} \ln(y) &= \ln(1-x) + \ln(1+2x) + \cdots + \ln(1-15x) \\ \frac{y'}{y} &= -\frac1{1-x} + \frac2{1+2x} - \cdots - \frac{15}{1-15x}. \end{aligned} Plugging in x = 0 x=0 gives y = 1 y=1 and y = 1 + 2 3 + + 14 15 = 8. y' = -1+2-3+\cdots+14-15 = -8.

Taking one more derivative gives y ( y ) ( y ) 2 y 2 = 1 ( 1 x ) 2 4 ( 1 + 2 x ) 2 225 ( 1 15 x ) 2 , \frac{y(y'')-(y')^2}{y^2} = -\frac1{(1-x)^2} - \frac4{(1+2x)^2} - \cdots - \frac{225}{(1-15x)^2}, so plugging in x = 0 x=0 as before gives y ( 8 ) 2 = 1 4 225 , y''-(-8)^2 = -1-4-\cdots-225, so y ( 0 ) = 64 k = 1 15 k 2 = 64 15 ( 16 ) ( 31 ) 6 = 64 1240 = 1176. y''(0) = 64 - \sum_{k=1}^{15} k^2 = 64 - \frac{15(16)(31)}6 = 64 - 1240 = -1176. Now y ( 0 ) y''(0) is just 2 C , 2C, so C = 588 , C = -588, and the answer is 588 . \fbox{588}.

Uros Stojkovic
Jan 4, 2018

To get x 2 x^{2} you multiply x x terms from two factors and 1 s 1s from other factors. Basically, we need to find all combinations of these x x terms, calculate and sum them. There are ( 15 2 ) = 105 \binom{15}{2} = 105 of them, but I decided to group them nicely according to the first term: all combinations with x -x , then 2 x 2x , 3 x -3x , and so on. Then I wrote a python code to do that faster for me, I hope it's understandable.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
import numpy as np

n = np.array(range(1, 16)) #creating an array consisted of numbers 1 to 15
print(n)

for i in range(15): #editing an array so that every odd number becomes negative to match x-term coefficients from the problem
    if n[i] % 2 == 0:
        n[i] = n[i]
    else:
        n[i] = -n[i]
print(n)              

sum = np.zeros((15)) #initializing array "sum"
for i in range(14): 
    sum[i] = np.sum(n[i+1:15]) * n[i] #calculating sum for every "group"
print(sum)

whole_sum = np.sum(sum)
print(whole_sum)

Deepanshu Gupta
Sep 10, 2014

Let given expression 'E' c o f f e c i e n t o f x 2 = 1 2 l i m x 0 { D ( E ) } = 588 w h e r e D ( E ) m e a n s d o u b l e d e r i v a t i v e o f E w i t h r e s p e c t t o x coffecient\quad of\quad { x }^{ 2 }\quad =\quad \frac { 1 }{ 2 } \quad lim\quad x\longrightarrow 0\quad \{ { D }^{ '' }(E)\} =588\\ where\quad { D }^{ '' }(E)\quad means\quad double\quad derivative\quad of\quad E\quad with\quad respect\quad to\quad x\\ \quad . NOTE: use logarithmic differentiation.(for easy calculation)

Can you please give explanation for what you have done ? Thanks.

Niranjan Khanderia - 3 years, 5 months ago

Here is a non-calculus/non-programming partial solution.

I will give a recursive forumula without proof:

F n = F n 1 n n 2 F_n = F_{n-1} - n\lfloor\dfrac{n}{2}\rfloor

By evaluating the first two products as ( 1 x ) ( 1 + 2 x ) (1-x)(1+2x) , the coefficient of x 2 x^2 is 2 -2 . So let F 2 = 2 F_2 = -2 .

Applying the recursive formula until F 15 F_{15} we get F 15 = 588 \boxed{F_{15} = 588} .

Giorgos K.
Jan 4, 2018

Mathematica:

Abs@Coefficient[Product[1 + (-1)^n*n*x, {n, 15}], x^2]

588

Let f ( x ) = ( 1 x ) ( 1 + 2 x ) ( 1 3 x ) ( 1 + 4 x ) ( 1 + 14 x ) ( 1 15 x ) f(x) = (1-x)(1+2x)(1-3x)(1+4x)\cdots(1+14x)(1-15x) . We need to find f ( 0 ) 2 ! = C \dfrac {f''(0)}{2!} = C and we have:

f ( x ) = k = 1 15 ( 1 + ( 1 ) k k x ) f ( 0 ) = 1 f ( x ) = k = 1 15 ( 1 ) k k f ( x ) 1 + ( 1 ) k k x f ( 0 ) = k = 1 15 ( 1 ) k k f ( 0 ) 1 + ( 1 ) k k ( 0 ) = k = 1 15 ( 1 ) k k = 1 + 2 3 + 4 5 + 6 13 + 14 15 = 1 + 1 + 1 + 1 + 1 + 1 + 1 15 = 8 f ( x ) = k = 1 15 ( 1 ) k k ( f ( x ) ( 1 + ( 1 ) k k x ) ( 1 ) k k f ( x ) ) ( 1 + ( 1 ) k k x ) 2 f ( 0 ) = k = 1 15 ( ( 1 ) k k ( 8 ) k 2 ) = 8 k = 1 15 ( 1 ) k k k = 1 15 k 2 = 8 ( 8 ) 15 ( 16 ) ( 31 ) 6 = 1176 C = 1176 2 = 588 C = 588 \begin{aligned} f(x) & = \prod_{k=1}^{15} \left(1+(-1)^kkx\right) \\ \implies f(0) & = 1 \\ f'(x) & = \sum_{k=1}^{15} \frac {(-1)^kkf(x)}{1+(-1)^k kx} \\ \implies f'(0) & = \sum_{k=1}^{15} \frac {(-1)^kkf(0)}{1+(-1)^k k(0)} = \sum_{k=1}^{15} (-1)^kk \\ & = {\color{#3D99F6}-1+2}{\color{#D61F06}-3+4}{\color{#3D99F6}-5+6} \cdots {\color{#3D99F6}-13+14}\color{#D61F06}-15 \\ & = {\color{#3D99F6}1}+{\color{#D61F06}1} + {\color{#3D99F6}1}+{\color{#D61F06}1}+{\color{#3D99F6}1}+{\color{#D61F06}1}+{\color{#3D99F6}1}{\color{#D61F06}-15} \\ & = - 8 \\ f''(x) & = \sum_{k=1}^{15} \frac {(-1)^kk\left(f'(x)\left(1+(-1)^k kx\right)-(-1)^kkf(x)\right)}{\left(1+(-1)^k kx\right)^2} \\ \implies f''(0) & = \sum_{k=1}^{15} \left((-1)^kk(-8) - k^2\right) \\ & = -8 \sum_{k=1}^{15} (-1)^k k - \sum_{k=1}^{15} k^2 \\ & = -8 (-8) - \frac {15(16)(31)}6 \\ & = -1176 \\ \implies C & = - \frac {1176}2 = - 588 \\ |C| & = \boxed{588} \end{aligned}

L e t a n = 1 + ( 1 ) n n x . M a k e a n o t e : I n a n a n + 1 t h e r e a r e n ( n + 1 ) x 2 s . a n d n i s a n i n t e g e r . I n a n a n + 1 + a n a n + 2 = a n { a n + 1 a n + 2 } t h e r e i s o n l y 0 N E + x 2 . S o f o r e a c h a n , w e c a n m a k e a p a i r o f t w o a d j o i n i n g l i n k s , a r a n d a r + 1 , n < r < 16 , a n d w h o s e s u m w i l l h a v e o n l y o n e + x 2 . B u t f o r e v e n n a f t e r p a i r i n g a 15 r e m a i n s , s o t h a t w i l l g e t n 15 x 2 s i n i t . S o o u t o f t h e p a r i n g s , w e g e t n = 1 15 n 15 n 2 = 252 o f + x 2 s . I n e v e n n = 2 m w i t h a 15 w e g e t m = 1 7 2 m ( 15 ) = 7 ( 7 + 1 ) 2 2 ( 15 ) = 840 o f x 2 s . S o C = + 252 840 = 840 252 = 588 E x p l a n a t i o n : T a k e n = 6. ( 1 + 6 x ) ( 1 7 x ) ( 1 + 8 x ) ( 1 9 x ) ( 1 + 10 x ) ( 1 11 x ) ( 1 + 12 x ) ( 1 13 x ) ( 1 + 14 x ) ( 1 15 x ) F o r x 2 : ( 1 + 6 x ) { ( 1 7 x ) + ( 1 + 8 x ) + ( 1 9 x ) + ( 1 + 10 x ) + ( 1 11 x ) + ( 1 + 12 x ) + ( 1 13 x ) + ( 1 + 14 x ) + ( 1 15 x ) } . . . . . . . + 6 x { 7 x + 8 x + 9 x + 10 x + 11 x + 12 x + 13 x + 14 x + 15 x ) } . . . . . . . . . . . . . . . . . . . . + 6 x { + 1 x + 1 x + 1 x + 1 15 x ) } . . . . . . . . . . . . . . . . . . . . . . { + 6 ( 1 + 1 + 1 + 1 ) + 6 ( 15 ) } x 2 . ( 24 90 ) x 2 . B y o u r f o r m u l a a b o v e : . . n = 2 m . . . . . . . . . . . . . . . . . . . ( 2 m 15 n 2 n ( 15 ) ) x 2 . . . . . . . . . . . . . . . . . . . . . . { 6 15 6 2 6 ( 15 ) } x 2 ( 6 4 90 ) x 2 . \color{#EC7300}{Let~a_n=1+(-1)^n*n*x.\\ Make~a~note:-~~~In~a_n*a_{n+1}~ there~are~{ n*(n+1)} ~~-~x^2s.~~~~and~n~is~an~integer.\\ \therefore~In~~a_n*a_{n+1}+a_n*a_{n+2}=a_n*\{a_{n+1}*a_{n+2}\}~there~is~only~0NE~~+x^2.\\ So~for~each~a_n,~we~can~make~a~pair~of~two~adjoining~links,~a_r~and~a_{r+1}~,~n<r<16,\\ and~whose~sum~will~have~only~one~+x^2.\\ But ~for~ even~n~after~pairing~~-~a_{15}~remains,~so~that~ will~ get ~~~~n*15~~-~x^2s~~in~it.\\ So~out~of~the~parings,~we~get~\displaystyle~\sum_{n=1}^{15} n*\lfloor \dfrac{15-n} 2 \rfloor=\color{#3D99F6}{252 ~of~+x^2s}.\\ In~even~n=2m~~with~a_{15}~~we~get~~~~\displaystyle~\sum_{m=1}^{7} 2*m*( - 15)=\dfrac{7*(7+1)}2*2*( - 15) =\color{#3D99F6}{840 ~of~~-~x^2s}.\\ So~|C|=|+252-840|=\Large \color{#D61F06}{840-252=588} }\\ ~~~~~\\ Explanation:- \\ \color{#3D99F6}{Take~n=6.~~(1+6x)(1-7x)(1+8x)(1-9x)(1+10x)(1-11x)(1+12x)(1-13x)(1+14x)(1-15x) \\ For~x^2:-(1+6x)* \Bigg \{(1\!-7x)+(1+8x)~~+~(1\!-9x)+(1+10x)~~+~(1\!-11x)+(1+12x)~~+~(1\!-13x)+(1+14x)~~+~(1-15x) \Bigg \} \\ .......\implies~ ~+6x~~* \Bigg \{~-~7x+8x~~~+~~~~-9x+10x~~+~~~~~-~11x+12x~~+~~~~~~~~~~-~13x+14x~~~+~~~~~~~~-15x) \Bigg \} \\ ....................~+6x~~*~~\Bigg \{~~~~+1x~~~~~~~~~~+1x~~~~~~~~~~~~~~+1x~~~~~~~~~~~~~~~~~+1~~~~~~-15x) \Bigg \} \\ ......................\Bigg \{+6*(1+1+1+1)~~~~~~~~~~~~~~~~~~~~~+6*(-15) \Bigg \}*x^2 .\\ \color{#D61F06}{(24~~~~~~~~~~~~~~~~~~~~-90)*x^2} .\\ ~~~~By~our~formula~above:-\\ ..n=2m...................(2m*\lfloor \dfrac{15-n} 2 \rfloor~~~~~~~~ n*(- 15))*x^2 \\ ......................\{ 6*\lfloor \dfrac{15-6} 2 \rfloor~~~~~~~~~~6*(- 15)\}*x^2 \\ \color{#D61F06}{(6*4~~~~~~~~~~~~~~~~~~~~~~~~~~~~- 90)*x^2.} }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...