Coefficient problem

Algebra Level 3

Find the coefficient of t 8 t^8 in the expansion of ( 1 + 2 t 2 t 3 ) 9 . \big(1+2t^2-t^3\big)^9.


The answer is 2520.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Chew-Seong Cheong
Feb 23, 2015

( 1 + 2 t 2 t 3 ) 9 = [ 1 + t 2 ( 2 t ) ] 9 = n = 0 9 ( 9 n ) t 2 n ( 2 t ) n \displaystyle (1+2t^2-t^3)^9=[1+t^2(2-t)]^9= \sum_{n=0} ^9 {\begin{pmatrix} 9 \\ n \end{pmatrix} t^{2n}(2-t)^n}

There are only two cases, when n = 3 n=3 and n = 4 n=4 that involves t 8 t^8 .

n = 3 ( 9 3 ) t 6 ( 2 t ) 3 ( 9 3 ) ( 1 ) 2 ( 3 2 ) 2 = 504 n = 4 ( 9 4 ) t 8 ( 2 t ) 4 ( 9 4 ) ( 1 ) 0 ( 4 0 ) 2 4 = 2016 \begin{array} {llll} n = 3 & \Rightarrow \begin{pmatrix} 9 \\ 3 \end{pmatrix} t^6(2-t)^3 & \Rightarrow \begin{pmatrix} 9 \\ 3 \end{pmatrix} (-1)^2 \begin{pmatrix} 3 \\ 2 \end{pmatrix} 2 & = 504 \\ n = 4 & \Rightarrow \begin{pmatrix} 9 \\ 4 \end{pmatrix} t^8(2-t)^4 & \Rightarrow \begin{pmatrix} 9 \\ 4 \end{pmatrix} (-1)^0 \begin{pmatrix} 4 \\ 0 \end{pmatrix} 2^4 & = 2016 \end{array}

Therefore, the coefficient of t 8 t^8 , a 8 = 504 + 2016 = 2520 a_8 = 504+2016 = \boxed{2520}

Bhargav Upadhyay
Feb 26, 2015

( x + y + z ) n = n ! p ! q ! r ! x p y q z r , W h e r e p + q + r = n a n d p , q , r N . T h u s ( 1 + 2 t 2 t 3 ) 9 = 9 ! p ! q ! r ! 1 p ( 2 t 2 ) q ( t 3 ) r , H e r e p + q + r = 9 . . . . . ( 1 ) F o r t 8 2 q + 3 r = 8 ( i ) r = 0 , q = 4 p = 5 ( f r o m e q u a t i o n 1 ) ( i i ) r = 2 , q = 1 p = 6 c o o e f f i c i e n t o f t 8 = 9 ! ( 1 5 2 4 ( 1 ) 0 ( 0 ) ! ( 4 ) ! ( 5 ) ! + 1 6 2 1 ( 1 ) 2 ( 6 ) ! ( 1 ) ! ( 2 ) ! ) = 2520. { (x+y+z) }^{ n }=\sum { \frac { n! }{ p!q!r! } } { x }^{ p }{ y }^{ q }{ z }^{ r },\quad Where\quad p+q+r=n\quad \\ and\quad p,q,r\quad \in \quad N.\\ Thus\quad { (1+{ 2t }^{ 2 }-{ t }^{ 3 }) }^{ 9 }=\sum { \frac { 9! }{ p!q!r! } } { 1 }^{ p }{ (2{ t }^{ 2 }) }^{ q }{ ({ -t }^{ 3 }) }^{ r },\\ Here\quad p+q+r=9\quad .....(1)\\ For\quad { t }^{ 8 }\quad 2q+3r=8\\ (i)\quad r=0,q=4\quad \therefore p=5\quad (from\quad equation\quad 1)\\ (ii)\quad r=2,q=1\quad \therefore p=6\\ \therefore \quad co-oefficient\quad of\quad { t }^{ 8 }\quad =\quad 9!\quad (\frac { { 1 }^{ 5 }{ 2 }^{ 4 }{ (-1) }^{ 0 } }{ (0)!(4)!(5)! } +\frac { { 1 }^{ 6 }{ 2 }^{ 1 }{ (-1) }^{ 2 } }{ (6)!(1)!(2)! } )\quad =\quad 2520.

Vishnu Bhagyanath
Jul 18, 2015

There are 2 ways to get a coefficient of t 8 t^ 8 , namely : t 3 × t 3 × 2 t 2 -t^3 \times -t^3 \times 2t^2 and 2 t 2 × 2 t 2 × 2 t 2 × 2 t 2 2t^2 \times 2t^2 \times 2t^2 \times 2t^2 , the coefficients being 2 2 and 16 16 respectively.

Considering the possible combinations of these, there are ( 9 2 ) ( 7 1 ) \binom92 \binom71 ways to arrive at t 3 × t 3 × 2 t 2 -t^3 \times -t^3 \times 2t^2 and ( 9 4 ) \binom94 ways to arrive at 2 t 2 × 2 t 2 × 2 t 2 × 2 t 2 2t^2 \times 2t^2 \times 2t^2 \times 2t^2

Therefore coefficient of t 8 t^8 is : ( 9 2 ) ( 7 1 ) × 2 + ( 9 4 ) × 16 = 2520 \binom92 \binom71 \times 2 + \binom94 \times 16 = 2520

It is basically a simple question of Multinomial Theorem .

Radhesh Sarma
Mar 13, 2016

@Sandeep Bhardwaj ,Is multinomial theorum ,riemann sum in JEE syllabus?

@Radhesh Sarma This doesn't seem to be a solution to the above problem. So refrain from asking irrelevant questions via posting them through solutions. Thanks!

However yes, Multinomial theorem and Riemann sum are in JEE syllabus. And if you've any such kind of questions further, you can let me know on my message board: Sandeep Bhardwaj's MessageBoard .

Thanks!

Sandeep Bhardwaj - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...