Coefficient tricks: maximization

Algebra Level 3

What is the maximum value of a + b + c \sqrt{a}+\sqrt{b}+\sqrt{c} for a , b , c R + a,b,c\in\mathbb{R}^+ knowing that a + 2 b + 3 c = 60 a+2b+3c = 60 ?

Important: The answer must be rounded to the nearest thousandth. Input 1 -1 if the answer cannot be found with the given information.


The answer is 10.488.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Riad Darwish
May 9, 2021

Weighted Mean : We define the weighted mean with paramter p R p\in\mathbb{R} , with coefficients λ 1 + + λ n R + \lambda_1+\ldots+\lambda_n \in\mathbb{R}^{+*} such that λ 1 + + λ n = 1 \lambda_1+\ldots+\lambda_n = 1 , as the following : P p ( { a i } , { λ i } ) = { i = 1 n a i λ i if p = 0 , ( i = 1 n λ i a i p ) 1 p if p 0. P_p(\{a_i\},\{\lambda_i\}) = \left\{\begin{array}{cl} \prod_{i=1}^n a_i^{\lambda_i}& \text{if } p = 0,\\ \left(\sum_{i=1}^n \lambda_i a_i^p\right)^{\frac{1}{p}} & \text{if } p \neq 0. \end{array}\right.

Weighted Mean Inequality : If p , q R p,q\in\mathbb{R} with p < q p<q , and if λ 1 + + λ n R + \lambda_1+\ldots+\lambda_n \in\mathbb{R}^{+*} with λ 1 + + λ n = 1 \lambda_1+\ldots+\lambda_n = 1 , for all positive real numbers a 1 , , a n a_1,\ldots,a_n , we have : P p ( { a i } , { λ i } ) P q ( { a i } , { λ i } ) P_p(\{a_i\},\{\lambda_i\}) \leq P_q(\{a_i\},\{\lambda_i\})

Equality holds if and only if a 1 = = a n a_1=\ldots=a_n --------------------------------

We have : a + b + c = a + 1 2 4 b + 1 3 9 c . \sqrt a + \sqrt b + \sqrt c = \sqrt a + \frac{1}{2} \sqrt{4b} + \frac{1}{3} \sqrt{9c}. We cannot use the weighted mean inequality with a , 4 b a,4b and 9 c 9c since 1 2 + 1 3 + 1 1 \frac{1}{2}+\frac{1}{3}+1\neq 1 . We solve this issue by dividing everything by 1 + 1 2 + 1 3 = 11 6 1+\frac{1}{2}+\frac{1}{3} = \frac{11}{6} as the following : a + b + c = 11 6 ( 6 11 a + 3 11 4 b + 2 11 9 c ) \sqrt a + \sqrt b + \sqrt c = \frac{11}{6} \cdot \left(\frac{6}{11} \sqrt a + \frac{3}{11} \sqrt{4b} + \frac{2}{11} \sqrt{9c}\right)

Therefore, by QM-AM weighted inequality, we have : a + b + c 11 6 6 11 a + 3 11 4 b + 2 11 9 c = 11 6 6 11 ( a + 2 b + 3 c ) = 11 60 6 = 110 10.488 \begin{aligned} \sqrt{a}+\sqrt{b}+\sqrt{c} &\leq \frac{11}{6} \cdot \sqrt{\frac{6}{11}\cdot a + \frac{3}{11} \cdot 4b + \frac{2}{11} \cdot 9c}\\[1mm] & = \frac{11}{6} \cdot \sqrt{\frac{6}{11} \cdot (a+2b+3c)}\\[1mm] & = \sqrt{\frac{11 \cdot 60}{6}}\\[1mm] & = \sqrt{110} \approx 10.488 \end{aligned}

Equality holds if and only if a = 4 b = 9 c a = 4b = 9c .

By Titu's lemma ,

a + b 1 2 + c 1 3 ( a + b + c ) 2 1 + 1 2 + 1 3 a + b + c 11 6 × 60 = 110 10.5 \begin{aligned} a + \frac b{\frac 12} + \frac c{\frac 13} & \ge \frac {\left(\sqrt a + \sqrt b + \sqrt c\right)^2}{1 + \frac 12 + \frac 13} \\ \implies \sqrt a + \sqrt b + \sqrt c & \le \sqrt{\frac {11}6 \times 60} = \sqrt{110} \approx \boxed{10.5} \end{aligned}

Equality occurs when a = 360 11 a= \dfrac {360}{11} , b = a 4 b = \dfrac a4 , and c = a 9 c = \dfrac a9 .

Hosam Hajjir
May 9, 2021

Let x = a , y = b , z = c x = \sqrt{a}, y = \sqrt{b} , z = \sqrt{c} , then we want to maximize

f ( x , y , z ) = x + y + z f(x, y, z) = x + y + z

subject to x 2 + 2 y 2 + 3 z 2 = 60 x^2 + 2 y^2 + 3 z^2 = 60

The constraint can be rewritten as x 2 + ( 2 y ) 2 + ( 3 z ) 2 = 60 x^2 + (\sqrt{2} y )^2 + (\sqrt{3} z )^2 = 60

Now define the vector x = ( x , 2 y , 3 z ) \mathbf{x} = ( x, \sqrt{2} y , \sqrt{3} z ) , then x x = 60 \mathbf{x \cdot x } = 60

On the other hand, our function can be expressed as

f ( x , y , z ) = x + y + z = x + 1 2 ( 2 y ) + 1 3 ( 3 z ) = y x f(x, y, z) = x + y + z = x + \dfrac{1}{\sqrt{2}} (\sqrt{2} y) + \dfrac{1}{\sqrt{3}} (\sqrt{3} z ) = \mathbf{y \cdot x }

where

y = ( 1 , 1 2 , 1 3 ) \mathbf{y} = (1, \dfrac{1}{\sqrt{2}}, \dfrac{1}{\sqrt{3}})

Now from the Cauchy-Schwartz inequality, we know that

x y x y = x x y y \mathbf{x \cdot y } \le | \mathbf{x} ||\mathbf{y} | = \sqrt{\mathbf{ x \cdot x}} \hspace{4pt} \sqrt{\mathbf{ y \cdot y}}

Thus,

f ( x , y , z ) 60 1 + 1 2 + 1 3 = 60 11 6 = 110 10.488 f(x, y, z) \le \sqrt{ 60 } \sqrt{ 1 + \dfrac{1}{2} + \dfrac{1}{3} } = \sqrt{60 } \sqrt{ \dfrac{11}{6} } = \sqrt{110} \approx \boxed{10.488}

Equality occurs when x = 2 y = 3 z x = 2 y = 3 z , and since x 2 + 2 y 2 + 3 z 2 = 60 x^2 + 2 y^2 + 3 z^2 = 60 then x 2 + 1 2 x 2 + 1 3 x 2 = 60 x^2 + \dfrac{1}{2} x^2 + \dfrac{1}{3} x^2 = 60 , from which

x 2 = 60 11 / 6 = 360 11 x^2 = \dfrac{ 60 }{11/6} = \dfrac{360}{11} . Thus a = x 2 = 360 11 , b = y 2 = 90 11 , c = z 2 = 40 11 a = x^2 = \dfrac{360}{11}, b = y^2 = \dfrac{90}{11}, c = z^2 = \dfrac{40}{11}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...