Coefficients Party, Part 7

Calculus Level 3

The coefficient of the x 6 x^6 term in the Maclaurin expansion of ( 2 x + 1 ) 3 2 (-2x+1)^\frac{3}{2} is equal to A B , \frac{A}{B}, where A A and B B are coprime positive integers. Find A + B . A+B.


The answer is 23.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jubayer Nirjhor
May 4, 2014

Let f ( x ) = ( 1 2 x ) 3 2 f(x)=(1-2x)^{\frac{3}{2}} . The coefficient of x 6 x^6 in the Maclaurin expansion of f ( x ) f(x) will be: f ( 6 ) ( 0 ) 6 ! \dfrac{f^{(6)}(0)}{6!} . The rest is simply finding the 6 6 th derivative of the function. We find that: f ( 6 ) ( x ) = 315 ( 1 2 x ) 9 2 f^{(6)}(x)=\dfrac{315}{(1-2x)^{\frac{9}{2}}} . So: f ( 6 ) ( 0 ) = 315 f^{(6)}(0)=315 , and so the coefficient is: 315 6 ! = 7 16 A B \dfrac{315}{6!}=\dfrac{7}{16}\equiv\dfrac{A}{B} , implying A + B = 23 A+B=\fbox{23} .

How did you get 315 as f^(6) (0)?

Ira Caballero - 7 years, 1 month ago

maybe manual

Albertus Djauhari - 7 years, 1 month ago
Gregory Ruffa
May 13, 2014

The terms in the general binomial expansion ( 1 + u ) p / q \ ( \ 1 \ + \ u \ )^{p/q} have the form ( p q k ) 1 ( p / q ) k u k \ \left( \begin{array}{c} \frac{p}{q} \\ k \end{array} \right) \ 1^{(p/q) - k} \ u^k \ [for which we thank Isaac Newton, although he didn't write it this way]. The "fractional" version of a binomial coefficient writes factorials in the usual way, but here they represent "endless products":

( p q k ) = p q ! k ! ( p q k ) ! = p q ( p q 1 ) ( p q 2 ) k ! ( p q k ) ( p q k 1 ) \left( \begin{array}{c} \frac{p}{q} \\ k \end{array} \right) \ = \ \frac{ \frac{p}{q} !}{k! \ ( \ \frac{p}{q} \ - \ k \ )! } \ = \ \frac{ \frac{p}{q} \cdot ( \ \frac{p}{q} - 1 \ ) \cdot \ ( \ \frac{p}{q} - 2 \ ) \cdot \ \ldots}{k! \ \cdot \ ( \ \frac{p}{q} - k \ ) \cdot \ ( \ \frac{p}{q} - k - 1 \ ) \cdot \ \ldots }

The term in the binomial expansion ( 1 + [ 2 x ] ) 3 / 2 \ ( \ 1 \ + \ [ \ -2x \ ] \ )^{3/2} we seek is then found from

( 3 2 6 ) ( 2 x ) 6 = 3 2 ! 6 ! ( 3 2 6 ) ! ( 2 ) 6 x 6 = 3 2 ! 6 ! ( 9 2 ) ! 2 6 x 6 \ \left( \begin{array}{c} \frac{3}{2} \\ 6 \end{array} \right) \ ( \ -2x \ )^6 \ = \ \frac{ \frac{3}{2} !}{6! \ ( \ \frac{3}{2} \ - \ 6 \ )! } \ ( -2 )^6 \ x^6 \ = \ \frac{ \frac{3}{2} !}{6! \ ( \ -\frac{9}{2} \ )! } \ 2^6 \ x^6

= 3 2 1 2 ( 1 2 ) ( 3 2 ) ( 5 2 ) ( 7 2 ) 6 ! 2 6 x 6 = 3 3 5 7 ( 1 ) 4 6 ! 2 6 2 6 x 6 = 315 720 x 6 = 7 16 x 6 = \ \frac{ \frac{3}{2} \ \cdot \ \frac{1}{2} \ \cdot \ ( \ -\frac{1}{2} \ ) \ \cdot \ ( \ -\frac{3}{2}\ ) \ \cdot \ ( \ -\frac{5}{2} \ ) \ \cdot \ ( \ -\frac{7}{2} \ ) }{6! } \ 2^6 \ x^6 \ = \ \frac{ 3 \ \cdot \ 3 \ \cdot \ 5 \ \cdot \ 7 \ \cdot \ (-1)^4 }{6! \ \cdot \ 2^6} \ 2^6 \ x^6 \ = \ \frac{ 315 }{720} \ x^6 \ = \ \frac{ 7 }{16} \ x^6 .

The requested sum of numerator and denominator (with the coefficient already in lowest terms) is thus 23.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...