Coffin Problem No.1

Algebra Level 4

A positive real number x x satisfies the inequality x ( 8 1 x + 1 + x ) 11 1 + x 16 1 x . x \big(8\sqrt{1-x} +\sqrt{1+x}\big) \le 11 \sqrt{1+x} - 16 \sqrt{1-x}. Find the minimum value of x . x.


The answer is 0.6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Mar 10, 2018

x ( 8 1 x + 1 + x ) 11 1 + x 16 1 x ( 8 x + 16 ) 1 x ( 11 x ) 1 + x Squaring both sides ( 64 x 2 + 256 x + 256 ) ( 1 x ) ( x 2 22 x + 121 ) ( 1 + x ) 64 x 3 192 x 2 + 256 x 3 21 x 2 + 99 x + 121 65 x 3 + 171 x 2 + 99 x 135 0 ( 5 x 3 ) ( 13 x 2 + 42 x + 45 ) 0 x 3 5 = 0.6 13 x 2 + 42 x + 45 has no real root. \begin{aligned} x\left(8\sqrt{1-x}+\sqrt{1+x}\right) & \le 11\sqrt{1+x}-16\sqrt{1-x} \\ (8x+16)\sqrt{1-x} & \le (11-x)\sqrt{1+x} & \small \color{#3D99F6} \text{Squaring both sides} \\ (64x^2+256x+256)(1-x) & \le (x^2 - 22x + 121)(1+x) \\ -64x^3-192x^2 + 256 & \le x^3 -21x^2 +99x + 121 \\ 65x^3+171x^2+99x-135 & \ge 0 \\ (5x-3)\left(13x^2 + 42x+45\right) & \ge 0 \\ \implies x & \ge \frac 35 = \boxed{0.6} & \small \color{#3D99F6} 13x^2 + 42x+45\text{ has no real root.} \end{aligned}

Patrick Corn
Mar 8, 2018

Let a = 1 x , b = 1 + x . a=\sqrt{1-x}, b = \sqrt{1+x}. Then x = b 2 1 , a 2 + b 2 = 2 , x=b^2-1, a^2+b^2 = 2, and the equation becomes ( b 2 1 ) ( 8 a + b ) 11 b 16 a b 2 ( 8 a + b ) 12 b 8 a 8 a ( b 2 + 1 ) 12 b b 3 64 a 2 ( b 2 + 1 ) 2 b 2 ( 12 b 2 ) 2 64 ( 2 b 2 ) ( b 2 + 1 ) 2 b 2 ( 12 b 2 ) 2 0 65 b 6 24 b 4 48 b 2 128 0 ( 5 b 2 8 ) ( 13 b 4 + 16 b 2 + 16 ) . \begin{aligned} (b^2-1)(8a+b) &\le 11b-16a \\ b^2(8a+b) &\le 12b-8a \\ 8a(b^2+1) &\le 12b-b^3 \\ 64a^2(b^2+1)^2 &\le b^2(12-b^2)^2 \\ 64(2-b^2)(b^2+1)^2 &\le b^2(12-b^2)^2 \\ &\vdots \\ 0 &\le 65b^6-24b^4-48b^2-128 \\ 0 &\le (5b^2-8)(13b^4+16b^2+16). \end{aligned} The second term is always positive, so the inequality is equivalent to 5 b 2 8 0 , 5b^2-8 \ge 0, or 5 ( x + 1 ) 8 0 , 5(x+1)-8 \ge 0, or x 3 / 5. x \ge 3/5. Hence the minimum value for x x is 0.6 . \fbox{0.6}.

Daniel Xiang
Mar 13, 2018

Using the substitution

y = 1 x 1 + x a n d x = 1 y 2 1 + y 2 \displaystyle y = \frac{\sqrt{1-x}}{\sqrt{1+x}}\quad \mathrm{and}\quad\displaystyle x = \frac{1-y^2}{1+y^2}

The inequality reduces to

( 1 y 2 ) ( 8 y + 1 ) ( 11 16 y ) ( 1 + y 2 ) (1-y^2)(8y+1)\le (11-16y)(1+y^2)

expanding and rearranging the terms we get

( 2 y 1 ) ( 2 y 2 2 y + 5 ) 0 (2y-1)(2y^2-2y+5)\le 0

and because 2 y 2 2 y + 5 = 0 2y^2-2y+5=0 has no real solutions, we know that y 1 2 \displaystyle y \le \frac{1}{2}

and finally, solving

1 x 1 + x 1 2 \displaystyle \frac{\sqrt{1-x}}{\sqrt{1+x}} \le \frac{1}{2}

we have x 3 5 x\ge \boxed{\displaystyle \frac{3}{5}}

Hana Wehbi
Mar 8, 2018

I found it convenient to plot it and we can see the solution is at x = 0.6 x=0.6 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...