Trig Identities Abound

Geometry Level 2

Where defined, cot θ cot θ ( cos θ sin θ tan θ cos θ ) = ? \Large \cot \theta - \cot \theta \left(\frac{\cos \theta - \sin \theta \cdot \tan \theta}{\cos \theta}\right) = \ ?

cos θ \cos \theta csc θ \csc \theta sin θ \sin \theta tan θ \tan \theta sec θ \sec \theta cot θ \cot \theta

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Michael Fuller
Nov 27, 2015

Using the relevant trigonometric identites ,

cot θ cot θ ( cos θ sin θ tan θ cos θ ) \cot \theta - \cot \theta \Big(\frac{\cos \theta - \sin \theta \tan \theta}{\cos \theta}\Big)

= cot θ ( 1 cos θ sin θ tan θ cos θ ) =\cot \theta \Big(1-\frac{\cos \theta-\sin \theta \tan \theta}{\cos \theta}\Big)

= cot θ ( sin θ tan θ cos θ ) =\cot \theta \Big(\frac{\sin \theta \tan \theta}{\cos \theta}\Big)

= ( sin θ cos θ ) =\Big(\frac{\sin \theta}{\cos \theta}\Big)

= tan θ =\large \color{#20A900}{\boxed{\tan \theta}}

i too did in the same way

PSN murthy - 5 years, 6 months ago

Nice! Same solution here too!

Ryoha Mitsuya - 5 years, 6 months ago
Jade Mijares
Nov 26, 2015

cot θ cot θ ( cos θ sin θ tan θ cos θ ) \cot \theta - \cot \theta \Big( \frac{\cos \theta - \sin \theta \tan \theta}{\cos \theta} \Big) = cos θ sin θ cos θ sin θ ( cos θ sin θ tan θ cos θ ) =\frac{\cos \theta}{\sin \theta} - \frac{\cos \theta}{\sin \theta} \Big( \frac{\cos \theta - \sin \theta \tan \theta}{\cos \theta} \Big) = cos θ sin θ cos θ sin θ ( sin θ cos θ ) sin θ =\frac{\cos \theta}{\sin \theta} - \frac{\cos \theta - \sin \theta (\frac{\sin \theta}{\cos \theta})}{\sin \theta} = cos θ sin θ ( cos 2 θ sin 2 θ cos θ ) sin θ =\frac{\cos \theta}{\sin \theta} - \frac{(\frac{\cos^2 \theta - \sin^2 \theta}{\cos \theta})}{\sin \theta} = cos θ sin θ cos 2 θ sin 2 θ cos θ sin θ =\frac{\cos \theta}{\sin \theta} - \frac{\cos^2 \theta - \sin^2 \theta}{\cos \theta \sin \theta} = cos 2 θ ( cos 2 θ sin 2 θ ) cos θ sin θ =\frac{\cos^2 \theta - (\cos^2 \theta - \sin^2 \theta)}{\cos \theta \sin \theta} = sin 2 θ cos θ sin θ =\frac{\sin^2 \theta}{\cos \theta \sin \theta} = sin θ cos θ =\frac{\sin \theta}{\cos \theta} = tan θ =\boxed{\tan \theta}

Lu Chee Ket
Dec 8, 2015

C S C S C S S C C \displaystyle \frac{C}{S} - \displaystyle \frac{C}{S} \displaystyle \frac{C - S \displaystyle \frac{S}{C}}{C} = C S 1 S C S S C 1 \displaystyle \frac{C}{S} - \displaystyle \frac{1}{S} \displaystyle \frac{C - S \displaystyle \frac{S}{C}}{1} = C S C S + S S C S \displaystyle \frac{C}{S} - \displaystyle \frac{C}{S} + \displaystyle \frac{S \displaystyle \frac{S}{C}}{S} = S C = tan θ \displaystyle \frac{S}{C} = \tan \theta

Answer: tan θ \boxed{\tan \theta}

Adnan Khan
Nov 27, 2015

I am agree with jade mijares

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...