[College Calc 01-02. Limits of Sequences] #01

Calculus Level 1

Given

lim n 25 n 4 + 16 n 2 + 9 ( n + 3 ) 3 n 3 = p q \lim_{n\to\infty} \frac{\sqrt{25n^4+16n^2+9}}{(n+3)^3-n^3} = \frac{p}{q}

for coprime positive integers p , q , p,\,q, find p + q . p+q.


This is a part of the College Calc problem set. You can find more problems here .


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Boi (보이)
Oct 29, 2020

Notice that the denominator is 9 n 2 + 27 n + 27. 9n^2+27n+27. Dividing the numerator and denominator by n 2 n^2 we have

= lim n 25 + 16 n 2 + 9 n 4 9 + 27 n 2 + 27 n 2 = 5 9 . \cdots = \lim_{n\to\infty}\frac{\sqrt{25+\dfrac{16}{n^2}+\dfrac{9}{n^4}}}{9+\dfrac{27}{n}^{\phantom{2}}\!\!\!+\dfrac{27}{n^2}} = \frac{5}{9}.

Hence p + q = 5 + 9 = 14 . p+q=5+9=\boxed{14}.

Chew-Seong Cheong
Oct 30, 2020

L = lim n 25 n 4 + 16 n 2 + 9 ( n + 3 ) 3 n 3 = lim n 25 n 4 + 16 n 2 + 9 n 3 + 9 n 2 + 27 n + 27 n 3 = lim n 25 n 4 + 16 n 2 + 9 9 n 2 + 27 n + 27 Divide up and down by n 2 = lim n 25 + 16 n 2 + 9 n 4 9 + 27 n + 27 n 2 = 5 9 \begin{aligned} L & = \lim_{n \to \infty} \frac {\sqrt{25n^4+16n^2 + 9}}{(n+3)^3-n^3} \\ & = \lim_{n \to \infty} \frac {\sqrt{25n^4+16n^2 + 9}}{n^3+9n^2 + 27n + 27 -n^3} \\ & = \lim_{n \to \infty} \frac {\sqrt{25n^4+16n^2 + 9}}{9n^2 + 27n + 27} & \small \blue{\text{Divide up and down by }n^2} \\ & = \lim_{n \to \infty} \frac {\sqrt{25+ \frac {16}{n^2} + \frac 9{n^4}}}{9 + \frac {27}n + \frac {27}{n^2}} \\ & = \frac 59 \end{aligned}

Therefore p + q = 5 + 9 = 14 p+q = 5 + 9 = \boxed{14} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...