[College Calc 01-02. Limits of Sequences] #02

Calculus Level 1

Given

lim n ( n 2 + 7 5 n 2 n ) = p q \lim_{n\to\infty}\left(\sqrt{n^2+\frac{7}{5}n-2}-n\right) = \frac{p}{q}

for coprime positive integers p , q , p,\,q, find p + q p+q .


This is a part of the College Calc problem set. You can find more problems here .


The answer is 17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Boi (보이)
Oct 29, 2020

Let us prove the general formula:

lim n ( a n 2 + b n + c a n 2 + b n + c ) = b b 2 a \boxed{\lim_{n\to\infty}\left(\sqrt{an^2+bn+c}-\sqrt{an^2+b'n+c'}\right) = \frac{b-b'}{2\sqrt{a}}}

We multiply the numerator and denominator by a n 2 + b n + c + a n 2 + b n + c \sqrt{an^2+bn+c}+\sqrt{an^2+b'n+c'} such that we have

lim n ( a n 2 + b n + c a n 2 + b n + c ) ( a n 2 + b n + c + a n 2 + b n + c ) a n 2 + b n + c + a n 2 + b n + c = lim n ( b b ) n + c c a n 2 + b n + c + a n 2 + b n + c . \lim_{n\to\infty}\frac{(\sqrt{an^2+bn+c}-\sqrt{an^2+b'n+c'})(\sqrt{an^2+bn+c}+\sqrt{an^2+b'n+c'})}{\sqrt{an^2+bn+c}+\sqrt{an^2+b'n+c'}} = \lim_{n\to\infty}\frac{(b-b')n+c-c'}{\sqrt{an^2+bn+c}+\sqrt{an^2+b'n+c'}}.

Notice, that the denominator can be replaced by 2 a n 2\sqrt{a}n and the numerator by ( b b ) n . (b-b')n. Then,

= lim n ( b b ) n 2 a n = b b 2 a . \cdots = \lim_{n\to\infty}\frac{(b-b')n}{2\sqrt{a}n} = \frac{b-b'}{2\sqrt{a}}. ~\square


Substituting the values a = 1 , b = 7 5 , c = 2 , b = 0 , c = 0 , a=1,\,b=\frac{7}{5},\,c=-2,\,b'=0,\,c'=0, we have

= 7 5 0 2 1 = 7 10 . \cdots = \frac{\frac{7}{5}-0}{2\sqrt{1}} = \frac{7}{10}.

Hence p + q = 7 + 10 = 17 . p+q=7+10=\boxed{17}.

Relevant question .

Pi Han Goh - 7 months, 2 weeks ago

The function n 2 + 7 5 n 2 n \sqrt{n^{2}+\frac{7}{5}n-2} - n can be rewritten as ( n + 7 10 ) 2 2.49 n \sqrt{\left(n+\frac{7}{10}\right)^{2}-2.49}-n using the completing the square method. As n n approaches infinity, the ( n + 7 10 ) 2 \left(n+\frac{7}{10}\right)^{2} term in the square root predominates meaning lim n ( n + 7 10 ) 2 2.49 = n + 7 10 \lim_{n \to \infty}\sqrt{\left(n+\frac{7}{10}\right)^{2}-2.49} = n + \frac{7}{10} . The final limit is thus lim n ( n + 7 10 n ) = 7 10 \lim_{n \to \infty}(n+\frac{7}{10} - n) = \frac{7}{10} and p + q = 17 p + q = \boxed{17}

Toby M
Dec 5, 2020

Rewrite the limit as: lim n ( n 1 + 7 5 n 2 n 2 n ) = lim n ( n ( 1 + 7 5 n 1 ) ) \lim_{n \to \infty} \left( n \sqrt{1 + \frac{7}{5n} - \frac{2}{n^2}}- n \right) = \lim_{n \to \infty} \left( n \left( \sqrt{1 + \frac{7}{5n}} - 1 \right) \right)

as the 2 / n 2 2/n^2 term is negligible.

Using the negative binomial expansion , ( 1 + x ) 1 / 2 1 + 1 2 x 1 2 1 2 1 2 ! x 2 (1+x)^{1/2} \approx 1 + \frac{1}{2}x - \frac{1}{2} \frac{-1}{2} \cdot \frac{1}{2!} x^2 . Substituting x = 7 5 n x = \frac{7}{5n} :

= lim n ( n ( 1 + 1 2 7 5 n + 1 8 7 2 ( 5 n ) 2 1 ) ) = \lim_{n \to \infty} \left( n \left( 1 + \frac{1}{2}\frac{7}{5n} + \frac{1}{8} \frac{7^2}{(5n)^2} - 1 \right) \right) = lim n ( n ( 1 2 7 5 n ) ) = 7 10 = \lim_{n \to \infty} \left( n \left( \frac{1}{2}\frac{7}{5n} \right) \right) = \frac{7}{10}

so p + q = 17 p+q = \boxed{17} .

Y Y = n 2 + 7 5 n 2 n \sqrt{n^2+\frac{7}{5}n -2}-n

Y Y = n ( 1 + 7 5 n 2 n 2 1 ) n(\sqrt{1+\frac{7}{5n}-\frac{2}{n^2}}-1)

Here n n reaches to

Y Y = n ( ( 1 + 7 10 n 1 n 2 ) 1 ) n((1+\frac {7}{10n} -\frac{1}{n^2})-1)

Using property when x reaches to 1 + x \sqrt{1+x} = 1 + x 2 1+\frac{x}{2}

Y Y = n ( 7 10 n 1 n 2 ) n(\frac{7}{10n} -\frac{1}{n^2})

Y Y = 7 10 1 n \frac{7}{10}-\frac{1}{n}

Here 1 n \frac{1}{n} reaches to zero

So Y = 7 10 \boxed{Y =\frac{7}{10}}

Finally p + q = 17 p+q =\boxed{17}

Chew-Seong Cheong
Oct 30, 2020

L = lim n ( n 2 + 7 5 n 2 n ) = lim n ( n 2 + 7 5 n 2 n ) ( n 2 + 7 5 n 2 + n ) n 2 + 7 5 n 2 + n = lim n 7 5 n 2 n 2 + 7 5 n 2 + n Divide up and down by n = lim n 7 5 2 n 1 + 7 5 n 2 n 2 + 1 = 7 10 \begin{aligned} L & = \lim_{n \to \infty} \left(\sqrt{n^2+\frac 75n-2}-n\right) \\ & = \lim_{n \to \infty} \frac {\left(\sqrt{n^2+\frac 75n-2}-n\right)\blue{\left(\sqrt{n^2+\frac 75n-2}+n\right)}}\blue {\sqrt{n^2+\frac 75n-2}+n} \\ & = \lim_{n \to \infty} \frac {\frac 75n-2}{\sqrt{n^2+\frac 75n-2}+n} & \small \blue{\text{Divide up and down by }n} \\ & = \lim_{n \to \infty} \frac {\frac 75-\frac 2n}{\sqrt{1+\frac 7{5n}-\frac 2{n^2}}+1} \\ & = \frac 7{10} \end{aligned}

Therefore p + q = 7 + 10 = 17 p+q = 7+10 = \boxed{17} .

Chris Lewis
Oct 30, 2020

lim n ( n 2 + 7 5 n 2 n ) = lim n n ( 1 + 7 5 n 2 n 2 1 ) = lim n n ( 1 + 1 2 [ 7 5 n 2 n 2 ] 1 ) using 1 + x = 1 + 1 2 x + = 7 10 \begin{aligned} \lim_{n\to \infty} \left(\sqrt{n^2+\frac75 n-2}-n \right) &=\lim_{n\to \infty} n\left(\sqrt{1+\frac{7}{5n}-\frac{2}{n^2}}-1 \right) \\ &=\lim_{n\to \infty} n\left(1+\frac12 \left[\frac{7}{5n}-\frac{2}{n^2}\right]-1 \right) \;\;\;{\color{#BBBBBB} \text{using }\sqrt{1+x} = 1+\frac12 x + \cdots}\\ &=\frac{7}{10} \end{aligned}

giving the answer 17 \boxed{17} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...