[College Calc 01-02. Limits of Sequences] #03

Calculus Level 1

Given

lim n ( 10 3 ) 2 n + ( 7 4 ) 3 n + sin n n n = p q \lim_{n\to\infty}\sqrt[{\small n}]{\left(\frac{10}{3}\right)^{2n}+\left(\frac{7}{4}\right)^{3n}+\sin^n n} = \frac{p}{q}

for coprime positive integers p , q , p,\,q, find p + q p+q .


This is a part of the College Calc problem set. You can find more problems here .


The answer is 109.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Boi (보이)
Oct 29, 2020

Let a n a_n be the expression inside the limit. Note that

( 10 3 ) 2 = 100 9 > 8 = 2 3 > ( 7 4 ) 3 ; sin n n 1 < 1 2 ( 10 3 ) 2 n . \left(\frac{10}{3}\right)^2=\frac{100}{9}>8=2^3>\left(\frac{7}{4}\right)^3;\quad |\sin^n n\,|\leq 1 < \frac{1}{2}\left(\frac{10}{3}\right)^{2n}.

Then we may write

1 2 ( 10 3 ) 2 n ( 10 3 ) 2 n + ( 7 4 ) 3 n + sin n n 5 2 ( 10 3 ) 2 n 100 9 ( 1 2 ) 1 / n a n 100 9 ( 5 2 ) 1 / n . \frac{1}{2}\left(\frac{10}{3}\right)^{2n} \leq\left(\frac{10}{3}\right)^{2n} + \left(\frac{7}{4}\right)^{3n}+\sin^n n\leq \frac{5}{2}\left(\frac{10}{3}\right)^{2n} \\ \, \\ \frac{100}{9}\left(\frac{1}{2}\right)^{1/n}\leq a_n\leq \frac{100}{9}\left(\frac{5}{2}\right)^{1/n}.

Note that the 1 / n 1/n in the exponent approaches zero -- lim n ( 1 2 ) 1 / n = lim n ( 5 2 ) 1 / n = 1. \displaystyle \lim_{n\to\infty}\left(\frac{1}{2}\right)^{1/n} = \lim_{n\to\infty}\left(\frac{5}{2}\right)^{1/n} = 1.

Thus, due to the squeeze theorem , the three expressions all converge to 100 9 , \dfrac{100}{9}, so that p + q = 100 + 9 = 109 . p+q=100+9=\boxed{109}.

Chew-Seong Cheong
Oct 30, 2020

First note that:

lim n ( 10 3 ) 2 n + ( 7 4 ) 3 n 1 n < lim n ( 10 3 ) 2 n + ( 7 4 ) 3 n + sin n n n < lim n ( 10 3 ) 2 n + ( 7 4 ) 3 n + 1 n \lim_{n \to \infty} \sqrt[n]{\left(\frac {10}3\right)^{2n} + \left(\frac 74\right)^{3n} - 1} < \lim_{n \to \infty} \sqrt[n]{\left(\frac {10}3\right)^{2n} + \left(\frac 74\right)^{3n} + \sin^n n} < \lim_{n \to \infty} \sqrt[n]{\left(\frac {10}3\right)^{2n} + \left(\frac 74\right)^{3n} + 1}

Now consider

L = lim n ( 10 3 ) 2 n + ( 7 4 ) 3 n ± 1 n = lim n ( 100 9 ) n + ( 343 64 ) n ± 1 n = lim n 100 9 1 + ( 3087 6400 ) n ± ( 9 100 ) n n = 100 9 \begin{aligned} L & = \lim_{n \to \infty} \sqrt[n]{\left(\frac {10}3\right)^{2n} + \left(\frac 74\right)^{3n} \pm 1} \\ & = \lim_{n \to \infty} \sqrt[n]{\left(\frac {100}9\right)^n + \left(\frac {343}{64}\right)^n \pm 1} \\ & = \lim_{n \to \infty} \frac {100}9\sqrt[n]{1 + \left(\frac {3087}{6400}\right)^n \pm \left(\frac 9{100}\right)^n} \\ & = \frac {100}9 \end{aligned}

So by squeeze theorem we have lim n ( 10 3 ) 2 n + ( 7 4 ) 3 n + sin n n n = 100 9 \displaystyle \lim_{n \to \infty} \sqrt[n]{\left(\frac {10}3\right)^{2n} + \left(\frac 74\right)^{3n} + \sin^n n} = \frac {100}9 and p + q = 100 + 9 = 109 p+q = 100+9 = \boxed{109} .

I used the same approach

Veselin Dimov - 6 months ago

Log in to reply

No upvote?

Chew-Seong Cheong - 6 months ago
Pi Han Goh
Oct 30, 2020

Here's an overkill approach:

Let's first set all the powers as n n only. That is, we want to evaluate lim n ( 100 9 ) n + ( 343 64 ) n + sin n n n . \lim_{n\to\infty}\sqrt[{\small n}]{\left(\frac{100}{9}\right)^{n}+\left(\frac{343}{64}\right)^{n}+\sin^n n}.

Let us invoke Theorem 3 of Stolz–Cesàro theorem :

If the sequence ( x n / x n 1 ) n = 1 (x_n /x_{n-1} )_{n=1}^\infty has a limit, then lim n x n n = lim n x n x n 1 \displaystyle \lim_{n\to\infty} \sqrt[n]{x_n} = \lim_{n\to\infty} \frac{x_n}{x_{n-1}} .

In this case, x n : = ( 100 / 9 ) n + ( 343 / 64 ) n + ( sin n ) n x_n := (100/9)^n + (343/64)^n + (\sin n)^n . Then, lim n x n x n 1 = ( 100 / 9 ) n + ( 343 / 64 ) n + ( sin n ) n ( 100 / 9 ) n 1 + ( 343 / 64 ) n 1 + ( sin n ) n 1 0 = lim n ( 100 / 9 ) n + ( 343 / 64 ) n + ( sin n ) n ( 100 / 9 ) n 1 + ( 343 / 64 ) n 1 + ( sin n ) n 1 ÷ ( 100 / 9 ) n ( 100 / 9 ) n 0 = lim n 1 + ( 343 / 64 ÷ 100 / 9 ) n + ( sin n ÷ 100 / 9 ) n ( 100 / 9 ) 1 + ( 343 / 64 ) 1 ( 343 / 64 ÷ 100 / 9 ) n + ( sin n ) 1 ( sin n ÷ 100 / 9 ) n 0 = 1 + 0 + 0 9 / 100 + 0 + 0 = 100 9 . \begin{array} { r c l } \displaystyle \lim_{n\to\infty} \dfrac{x_n}{x_{n-1}} &=& \dfrac{(100/9)^{n} + (343/64)^n + (\sin n)^n}{(100/9)^{n-1} + (343/64)^{n-1} + (\sin n)^{n-1}} \\ \phantom0 \\ &=& \displaystyle \lim_{n\to\infty}\dfrac{(100/9)^{n} + (343/64)^n + (\sin n)^n}{(100/9)^{n-1} + (343/64)^{n-1} + (\sin n)^{n-1}} \div \dfrac{(100/9)^n}{(100/9)^n}\\ \phantom0 \\ &=& \displaystyle \lim_{n\to\infty} \dfrac{1 + (343/64 \div 100/9)^n + (\sin n \div 100/9)^n}{(100/9)^{-1} + (343/64)^{-1} \cdot (343/64 \div 100/9)^n + (\sin n)^{-1} \cdot (\sin n \div 100/9)^n } \\ \phantom0 \\ &=& \dfrac{1 + 0 + 0}{9/100 + 0 + 0} = \dfrac{100}9. \\ \end{array} Hence, the limit in question is also equal to 100 9 \frac {100}9 . The answer is 100 + 9 = 109 . 100 + 9 = \boxed{109} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...