[College Calc 01-02. Limits of Sequences] #06

Calculus Level 4

Let a n a_n be a sequence of real numbers inductively defined by

a 0 = 1 ; a n + 1 = 2 3 a n + 2. a_0 = 1;\quad a_{n+1} = \frac{2}{3}{a_n} + 2.

Suppose that

lim n ( p n k = 0 n a k ) = q \lim_{n\to\infty}\left(pn-\sum_{k=0}^{n} a_k \right) = q

for some reals p , q . p,\,q. Find p + q . p+q.


This is a part of the College Calc problem set. You can find more problems here .


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Boi (보이)
Oct 29, 2020

Let us suppose that a n a_n converges to α . \alpha. Then, we easily see that

α = 2 3 α + 2 α = 6. \alpha = \frac{2}{3}\alpha+2\implies \alpha = 6.

Then, let a n = b n + 6 a_n = b_n + 6 so that

b n + 1 + 6 = 2 3 ( b n + 6 ) + 2 b n + 1 = 2 3 b n b n = k ( 2 3 ) n . b_{n+1} + 6 = \frac{2}{3}(b_n+6) + 2\implies b_{n+1} = \frac{2}{3}b_n\implies b_n = k\left(\frac{2}{3}\right)^n.

Substituting back, we have

a n = k ( 2 3 ) n + 6 a 0 = k + 6 = 1 k = 5. a_n = k\left(\frac{2}{3}\right)^n + 6\implies a_0 = k+6 = 1\implies k=-5.

Using the sum formula for geometric sequences ,

k = 0 n a k = k = 0 n [ 5 ( 2 3 ) k + 6 ] = 5 1 ( 2 3 ) n + 1 1 2 3 + 6 ( n + 1 ) , \sum_{k=0}^{n} a_k = \sum_{k=0}^{n} \left[-5\left(\frac{2}{3}\right)^k + 6\right] = -5\cdot \frac{1-\left(\frac{2}{3}\right)^{n+1}}{1-\frac{2}{3}} + 6(n+1),

and thus

lim n ( p n k = 0 n a k ) = lim n ( p 6 ) n + 9 = q . \lim_{n\to\infty}\left(pn - \sum_{k=0}^{n}a_k\right) = \lim_{n\to\infty} (p-6)n + 9 = q.

Clearly if the limit is to converge, p = 6 p=6 such that q = 9. q=9.

p + q = 6 + 9 = 15 . \therefore~p+q=6+9 = \boxed{15}.

Chew-Seong Cheong
Oct 30, 2020

Given that

a n + 1 = 2 3 a n + 2 a n + 1 6 = 2 3 ( a n 6 ) \begin{aligned} a_{n+1} & = \frac 23 a_n + 2 \\ a_{n+1} - 6 & = \frac 23 \left(a_n - 6 \right) \end{aligned}

Let b n = a n 6 b_n = a_n - 6 . Then b n + 1 = 2 3 b n b_{n+1} = \dfrac 23 b_n and the characteristic equation of the linear recurrent relations is r = 2 3 r = \dfrac 23 and b n = c ( 2 3 ) n b_n = c \left(\dfrac 23\right)^n , where c c is a constant. Since b 0 = 1 6 = 5 = c b_0 = 1 - 6 = - 5 = c , b n = a n 6 = 5 ( 2 3 ) n b_n = a_n - 6 = -5 \left(\dfrac 23\right)^n , and

a k = 6 5 ( 2 3 ) k k = 0 n a k = k = 0 n ( 6 5 ( 2 3 ) k ) = 6 ( n + 1 ) 5 k = 0 n ( 2 3 ) k 6 n k = 0 n a k = 5 k = 0 n ( 2 3 ) k 6 lim n ( 6 n k = 0 n a k ) = 5 1 1 2 3 6 = 9 \begin{aligned} a_k & = 6 - 5\left(\dfrac 23\right)^k \\ \sum_{k=0}^n a_k & = \sum_{k=0}^n \left(6-5\left(\dfrac 23\right)^k\right) = 6(n+1) - 5 \sum_{k=0}^n \left(\frac 23\right)^k \\ 6n - \sum_{k=0}^n a_k & = 5 \sum_{k=0}^n \left(\frac 23\right)^k - 6 \\ \implies \lim_{n \to \infty}\left(6n - \sum_{k=0}^n a_k \right) & = 5 \cdot \frac 1{1-\frac 23} - 6 = 9 \end{aligned}

Therefore p + q = 6 + 9 = 15 p+q = 6 + 9 = \boxed{15} .

Hongqi Wang
Oct 30, 2020

a n + 1 = 2 3 a n + 2 a n + 1 6 = 2 3 a n + 2 6 = 2 3 ( a n 6 ) a_{n+1} = \frac 23 a_n + 2 \\ a_{n+1} - 6 = \frac 23 a_n + 2 - 6 = \frac 23 (a_n - 6)

let X n = a n 6 X_n = a_n - 6 , then X 0 = a 0 6 = 5 X_0 = a_0 - 6 = -5 , X n + 1 = 2 3 X n X_{n+1} = \frac 23 X_n

i = 0 n X i = i = 0 n ( a i 6 ) X 0 ( 1 ( 2 3 ) n ) 1 2 3 = i = 0 n a i 6 ( n + 1 ) 15 ( 1 ( 2 3 ) n ) = i = 0 n a i 6 ( n + 1 ) \sum\limits_{i=0}^n X_i = \sum\limits_{i=0}^n (a_i - 6) \\ \frac {X_0 \cdot (1-(\frac 23)^n)}{1 - \frac 23} = \sum\limits_{i=0}^n a_i - 6(n+1) \\ -15(1 - (\frac 23)^n) = \sum\limits_{i=0}^n a_i - 6(n+1)

lim n i = 0 n X i = lim n ( i = 0 n a i 6 ( n + 1 ) ) 15 = lim n ( i = 0 n a i 6 ( n + 1 ) ) lim n ( 6 n i = 0 n a i ) = 9 p + q = 6 + 9 = 15 \lim\limits_{n \to \infty} \sum\limits_{i=0}^n X_i = \lim\limits_{n \to \infty}(\sum\limits_{i=0}^n a_i - 6(n+1)) \\ -15 = \lim\limits_{n \to \infty}(\sum\limits_{i=0}^n a_i - 6(n+1)) \\ \lim\limits_{n \to \infty}(6n -\sum\limits_{i=0}^n a_i) = 9 \\ \therefore p + q = 6 + 9 = 15

Francesco Iacca
Nov 1, 2020

Let's start from the relation

a n + 1 = 2 / 3 a n + 2 a n + 1 a n = 2 a n / 3 a_{n+1}=2/3a_n+2 \implies a_{n+1}-a_n=2-a_n/3

Using this, we have

k = 0 n ( 2 a k / 3 ) = k = 0 n ( a k + 1 a k ) 2 ( n + 1 ) 1 3 k = 0 n a k = a n + 1 a 0 k = 0 n a k = 6 n 2 a n + 3 \sum_{k=0}^n (2-a_k/3) = \sum_{k=0}^n (a_{k+1}-a_k) \implies 2(n+1) - \frac{1}{3}\sum_{k=0}^n a_k = a_{n+1}-a_0 \implies \sum_{k=0}^n a_k = 6n-2a_n+3

From this, since we want the limit to be finite, we get p=6; let's calculate now the limit of a n a_n : since f ( n ) = 2 / 3 n + 2 f(n)=2/3n +2 is a contraction, we have that a n a_n converges to the fixed point of f ( n ) f(n) , which is 6. Now, we have

q = lim n ( p n k = 0 n a k ) = lim n ( 2 a n 3 ) = 9 q= \lim_{n} (pn-\sum_{k=0}^n a_k) = \lim_n (2a_n-3) = 9

Therefore, p + q = 15 p+q=15

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...