[College Calc 01-03. Limits of Functions] #02

Calculus Level 4

Given

lim x 0 ( e e cos x ) ( cos x ) 1 / x 2 x 2 = p e q , \lim_{x\to 0} \frac{(e-e^{\cos x})(\cos x)^{1/x^2}}{x^2}=pe^q, where p p and q q are rational numbers, find the value of 360 ( p 2 + q ) . 360(p^2+q).


This is a part of the College Calc problem set. You can find more problems here .


The answer is 270.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sathvik Acharya
Dec 24, 2020

Claim: lim x 0 e e cos x x 2 = e 2 \lim_{x\rightarrow 0}\frac{e-e^{\cos x}}{x^2}=\frac{e}{2} Proof: Since the limit is of the form e e cos 0 0 2 = 0 0 , \frac{e-e^{\cos 0}}{0^2}=\frac{0}{0} \;, L'Hôpital's Rule is applicable. So we have, lim x 0 e e cos x x 2 = lim x 0 d d x ( e e cos x ) d d x ( x 2 ) = lim x 0 sin x e cos x 2 x = 0 0 \lim_{x\rightarrow 0}\frac{e-e^{\cos x}}{x^2}=\lim_{x\rightarrow 0}\frac{\frac{d}{dx}(e-e^{\cos x})}{\frac{d}{dx}(x^2)}=\lim_{x\rightarrow 0}\frac{\sin x\cdot e^{\cos x}}{2x}=\frac{0}{0} Applying L'Hôpital's Rule again, we have lim x 0 sin x e cos x 2 x = lim x 0 d d x sin x e cos x d d x ( 2 x ) = lim x 0 cos x e cos x sin 2 x e cos x 2 = cos 0 e cos 0 sin 2 0 e cos 0 2 = e 2 \lim_{x\rightarrow 0}\frac{\sin x\cdot e^{\cos x}}{2x}=\lim_{x\rightarrow 0}\frac{\frac{d}{dx}\sin x\cdot e^{\cos x}}{\frac{d}{dx}(2x)}=\lim_{x\rightarrow 0}\frac{\cos x\cdot e^{\cos x}-\sin^2x\cdot e^{\cos x}}{2}=\frac{\cos 0\cdot e^{\cos 0}-\sin^20\cdot e^{\cos 0}}{2}=\frac{e}{2}


Claim: lim x 0 ( cos x ) 1 x 2 = e e \lim_{x\rightarrow 0}\; (\cos x)^{\large \frac{1}{x^2}}=\frac{\sqrt{e}}{e} Proof: Let f ( x ) = ( cos x ) 1 x 2 f(x)= (\cos x)^{\large \frac{1}{x^2}} . In order to eliminate the exponent, log e f ( x ) = log e ( cos x ) 1 x 2 = 1 x 2 log e ( cos x ) \log_e f(x)=\log_e (\cos x)^{\large \frac{1}{x^2}}=\frac{1}{x^2}\log_e(\cos x) lim x 0 log e f ( x ) = lim x 0 log e ( cos x ) x 2 = 0 0 \implies \lim_{x\rightarrow 0}\log_ef(x)=\lim_{x\rightarrow 0}\frac{\log_e(\cos x)}{x^2}=\frac{0}{0} Applying L'Hôpital's Rule, we have lim x 0 log e f ( x ) = lim x 0 d d x log e ( cos x ) d d x x 2 = lim x 0 tan x 2 x = 1 2 lim x 0 tan x x = 1 2 \lim_{x\rightarrow 0}\log_ef(x)=\lim_{x\rightarrow 0}\frac{\frac{d}{dx}\log_e(\cos x)}{\frac{d}{dx}x^2}=\lim_{x\rightarrow 0}\frac{-\tan x}{2x} =-\frac{1}{2}\cdot \lim_{x\rightarrow 0}\frac{\tan x}{x}=-\frac{1}{2} lim x 0 ( cos x ) 1 x 2 = lim x 0 f ( x ) = 1 e = e e \implies \lim_{x\rightarrow 0}\; (\cos x)^{\large \frac{1}{x^2}}= \lim_{x\rightarrow 0}f(x)=\frac{1}{\sqrt{e}}=\frac{\sqrt{e}}{e}


Using the above two claims, from the prioperties of limits , lim x 0 ( e e cos x ) ( cos x ) 1 x 2 x 2 = lim x 0 e e cos x x 2 lim x 0 ( cos x ) 1 x 2 \lim_{x\rightarrow 0}\frac{(e-e^{\cos x})(\cos x)^{\large \frac{1}{x^2}}}{x^2}=\lim_{x\rightarrow 0}\frac{e-e^{\cos x}}{x^2}\cdot \lim_{x\rightarrow 0}\; (\cos x)^{\large \frac{1}{x^2}} = e 2 e e \;\;\;\;\;\;\;=\frac{e}{2}\cdot \frac{\sqrt{e}}{e} = e 2 \;=\frac{\sqrt{e}}{2}

Therefore, p = q = 1 2 360 ( p 2 + q ) = 270 p=q=\frac{1}{2}\implies 360(p^2+q)=\boxed{270}

Dwaipayan Shikari
Dec 24, 2020

α = lim x 0 ( e e c o s x ) ( c o s x ) 1 x 2 x 2 \alpha=\lim_{x\rightarrow{0}} \mathrm{\frac{(e-e^{cosx})(cosx)^{\frac{1}{x^2}}}{x^2}} lim x 0 ( c o s x ) 1 x 2 = ( 1 x 2 2 ) 1 x 2 = ( 1 x 2 2 ) 2 x 2 . 1 2 = e 1 2 \color{#E81990}\mathrm{\lim_{x\rightarrow{0}}(cosx)^{\frac{1}{x^2}} = (1-{\frac{x^2}{2}})^{\frac{1}{x^2}} = (1-\frac{x^2}{2})^{-\frac{2}{x^2} .-\frac{1}{2}}=e^{-\frac{1}{2}}} Note [ c o s x = 1 x 2 2 ! + x 4 4 ! ] [\color{#20A900}\mathrm{cosx=1-\frac{x^2}{2!} +\frac{x^4}{4!}-\cdots}] and [ lim x 0 ( 1 + x ) 1 x = e ] [\mathrm{\lim_{x\rightarrow{0} } (1+x)^{\frac{1}{x}}=e}] α = lim x 0 ( e e c o s x ) e 1 / 2 x 2 = e e 1 x 2 2 x 2 = e ( 1 e x 2 / 2 x 2 ) \alpha= \lim_{x\rightarrow{0}}\mathrm{\frac{(e-e^{cosx})e^{-1/2}}{x^2}=\frac{\sqrt{e}-e^{\frac{1-x^2}{2}}}{x^2}=\sqrt{e}{(\frac{1-e^{-x^2/2}}{x^2})}} lim x 0 e ( 1 1 + x 2 2 x 2 ) = e 2 \mathrm{\lim_{x\rightarrow{0}}\sqrt{e}{(\frac{1-1+\frac{x^2}{2}}{x^2})}=\mathrm{\boxed{\frac{\sqrt{e}}{2}}}} Note : Here lim x 0 e x 2 / 2 1 x 2 2 \color{#3D99F6} \mathrm{\lim_{x\rightarrow{0}} e^{-x^2/2} ≈ 1-\frac{x^2}{2}} and lim x 0 c o s x 1 x 2 2 \color{#3D99F6} \mathrm{\lim_{x\rightarrow{0}} cosx≈1-\frac{x^2}{2}}

So p = 1 2 p=\frac{1}{2} and q = 1 2 q=\frac{1}{2}

Answer is 360 ( ( 1 2 ) 2 + 1 2 ) = 270 \color{#CEBB00}\boxed{360((\frac{1}{2})^2 +\frac{1}{2})= 270}

Relevant wiki

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...