[College Calc 01-03. Limits of Functions] #03

Calculus Level 4

Given

lim x 0 tan 2 x 3 sin 2 x 3 x p sin ( 5 x ) = q \lim_{x\to 0}\frac{\sqrt[3]{\tan^2 x} - \sqrt[3]{\sin^2 x}}{x^p \sin(5x)} = q

for some nonzero p , q , p, q, find 120 ( p + q ) . 120(p+q).


This is a part of the College Calc problem set. You can find more problems here .


The answer is 208.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Sathvik Acharya
Jan 10, 2021

Claim: lim x 0 tan n x sin n x x n + 2 = n 2 , n R \lim_{x\rightarrow 0} \dfrac{\tan^nx-\sin^nx}{x^{n+2}}=\dfrac{n}{2}\;, \;\;\;\;\; \forall n\in\mathbb{R} Proof: lim x 0 tan n x sin n x x n + 2 = lim x 0 tan n x ( 1 cos n x ) x n + 2 = lim x 0 tan n x x n 1 cos n x x 2 = lim x 0 tan n x x n lim x 0 1 cos n x x 2 = 1 lim x 0 d d x ( 1 cos n x ) d d x ( x 2 ) = lim x 0 n cos n 1 x sin x 2 x = lim x 0 n cos n 1 x 2 lim x 0 sin x x = n 2 \begin{aligned} \lim_{x\rightarrow 0} \dfrac{\tan^nx-\sin^nx}{x^{n+2}} &=\lim_{x\rightarrow 0} \dfrac{\tan^nx(1-\cos^nx)}{x^{n+2}} \\ \\ &=\lim_{x\rightarrow 0}\dfrac{\tan^nx}{x^n}\cdot \dfrac{1-\cos^nx}{x^2}\\ \\ &=\lim_{x\rightarrow 0}\dfrac{\tan^nx}{x^n}\cdot \lim_{x\rightarrow 0}\dfrac{1-\cos^nx}{x^2} \\ \\ &=1\cdot \lim_{x\rightarrow 0}\dfrac{\frac{\mathrm{d}}{\mathrm{d}x}(1-\cos^nx)}{\frac{\mathrm{d}}{\mathrm{d}x}(x^2)} \\ \\ &=\lim_{x\rightarrow 0}\dfrac{n\cos^{n-1}x\sin x}{2x}\\ \\ &=\lim_{x\rightarrow 0}\dfrac{n\cos^{n-1}x}{2}\cdot \lim_{x\rightarrow 0}\frac{\sin x}{x} \\ \\ &=\frac{n}{2} \end{aligned}


In the above problem, n = 2 3 n=\dfrac{2}{3} . So the limit is, q = lim x 0 tan 2 3 x sin 2 3 x x p sin ( 5 x ) = lim x 0 tan 2 3 x sin 2 3 x x 8 3 x 8 3 x p sin ( 5 x ) 5 x 5 x = 2 3 2 lim x 0 x 5 3 p 5 lim x 0 sin ( 5 x ) 5 x = 1 3 1 5 lim x 0 x 5 3 p \begin{aligned} q=\lim_{x\rightarrow 0} \dfrac{\tan^{\frac{2}{3}}x-\sin^{\frac{2}{3}}x}{x^p\sin (5x)} &=\lim_{x\rightarrow 0} \dfrac{\tan^{\frac{2}{3}}x-\sin^{\frac{2}{3}}x}{x^{\frac{8}{3}}} \cdot \frac{x^{\frac{8}{3}}}{x^p\cdot \dfrac{\sin (5x)}{5x}\cdot 5x} \\ &=\dfrac{\frac{2}{3}}{2}\cdot \dfrac{\displaystyle \lim_{x\to 0}\;x^{\frac{5}{3}-p}}{5\cdot \displaystyle \lim_{x\to 0}\;\dfrac{\sin (5x)}{5x}} \\ &=\frac{1}{3}\cdot \frac{1}{5} \lim_{x\to 0}\;x^{\frac{5}{3}-p} \end{aligned} Since q q is non-zero, 5 3 p = 0 p = 5 3 q = 1 15 \dfrac{5}{3}-p=0\implies p=\dfrac{5}{3}\implies q=\dfrac{1}{15}

Therefore, 120 ( p + q ) = 120 ( 5 3 + 1 15 ) = 208 120(p+q)=120\left(\dfrac{5}{3}+\dfrac{1}{15}\right)=\boxed{208}

Boi (보이)
Jan 9, 2021

lim x 0 tan 2 x 3 sin 2 x 3 x p sin ( 5 x ) = lim x 0 ( tan x 3 sin x 3 ) ( tan x 3 + sin x 3 ) x p 5 x = lim x 0 2 x 3 ( tan x 3 sin x 3 ) ( tan 2 x 3 + tan x 3 sin x 3 + sin 2 x 3 ) x p 5 x ( tan 2 x 3 + tan x 3 sin x 3 + sin 2 x 3 ) = lim x 0 2 x 3 ( tan x sin x ) x p 5 x 3 x 2 3 = lim x 0 2 x 3 tan x ( 1 cos x ) x p 5 x 3 x 2 3 = lim x 0 2 x 1 / 3 x 1 2 x 2 x p 5 x 3 x 2 / 3 = lim x 0 x 5 / 3 15 x p = q \lim_{x\to 0} \frac{\sqrt[3]{\tan^2 x} - \sqrt[3]{\sin^2 x}}{x^p \sin (5x)} \\ \, \\ = \lim_{x\to 0} \frac{(\sqrt[3]{\tan x}-\sqrt[3]{\sin x}){\color{#3D99F6}(\sqrt[3]{\tan x}+\sqrt[3]{\sin x})}}{x^p \cdot 5x} \\ \, \\ = \lim_{x\to 0}\frac{{\color{#3D99F6}2\sqrt[3]{x}}(\sqrt[3]{\tan x}-\sqrt[3]{\sin x})(\sqrt[3]{\tan^2 x}+\sqrt[3]{\tan x}\sqrt[3]{\sin x}+\sqrt[3]{\sin^2 x})}{x^p \cdot 5x \cdot {\color{#E81990}(\sqrt[3]{\tan^2 x}+\sqrt[3]{\tan x}\sqrt[3]{\sin x}+\sqrt[3]{\sin^2 x})}} \\ \, \\ =\lim_{x\to 0}\frac{2\sqrt[3]{x}(\tan x-\sin x)}{x^p \cdot 5x \cdot {\color{#E81990}3\sqrt[3]{x^2}}} \\ \, \\ = \lim_{x\to 0} \frac{2\sqrt[3]{x} \cdot {\color{goldenrod}\tan x}{\color{limegreen}(1-\cos x)}}{x^p \cdot 5x \cdot 3\sqrt[3]{x^2}} \\ \, \\ = \lim_{x\to 0} \frac{2\cdot x^{1/3} \cdot {\color{goldenrod}x} \cdot {\color{limegreen}\frac{1}{2}x^2}}{x^p \cdot 5x \cdot 3x^{2/3}} \\ \, \\ = \lim_{x\to 0} \frac{x^{5/3}}{15x^p} = q

Since q 0 q\neq 0 , we have p = 5 / 3 p=5/3 and thus q = 1 / 15. q=1/15. Therefore, 120 ( p + q ) = 200 + 8 = 208. 120(p+q) = 200 + 8 = 208.

P.S. I would love someone to try and solve the entire thing with l'hopital.

ChengYiin Ong
Jan 18, 2021

I WA the problem ~~

By taylor expanding the function tan 2 x 3 sin 2 x 3 sin ( 5 x ) \displaystyle \frac{\sqrt[3]{\tan^2 x}-\sqrt[3]{\sin^2 x}}{\sin (5x)} , we get x 5 3 15 + 79 x 11 3 270 + 42647 x 17 3 48600 + 4300659 x 23 3 18370800 + O ( x 25 3 ) \frac{x^{\frac{5}{3}}}{15}+\frac{79x^{\frac{11}{3}}}{270}+\frac{42647x^{\frac{17}{3}}}{48600}+\frac{4300659x^{\frac{23}{3}}}{18370800}+O(x^{\frac{25}{3}}) which leads us to choosing p = 5 3 p=\frac{5}{3} and q = 1 15 q=\frac{1}{15} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...