Color wash the series

Calculus Level 3

1 2 1 + 5 2 11 + 9 2 ( 11 ) 2 + 1 3 2 ( 11 ) 3 + 1 7 2 ( 11 ) 4 + = ? \dfrac{\color{magenta}{1^2}}{\color{#302B94}{1}}+\dfrac{\color{magenta}{5^2}}{\color{#302B94}{11}}+\dfrac{\color{magenta}{9^2}}{\color{#302B94}{(11)^2}}+\dfrac{\color{magenta}{13^2}}{\color{#302B94}{(11)^3}}+\dfrac{\color{magenta}{17^2}}{\color{#302B94}{(11)^4}}+\cdots= \, ?


The answer is 4.092.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ikkyu San
Aug 9, 2015

Let

S 1 = 1 2 1 + 5 2 11 + 9 2 1 1 2 + 1 3 2 1 1 3 + 1 7 2 1 1 4 + ( 1 ) \begin{aligned}\color{magenta}{S_1=}&\ \color{magenta}{\dfrac{1^2}1+\dfrac{5^2}{11}+\dfrac{9^2}{11^2}+\dfrac{13^2}{11^3}+\dfrac{17^2}{11^4}+\cdots}\Rightarrow(1)\end{aligned}

Multiplying with 1 11 \dfrac1{11} in equation ( 1 ) (1)

1 11 S 1 = 1 2 11 + 5 2 1 1 2 + 9 2 1 1 3 + 1 3 2 1 1 4 + 1 7 2 1 1 5 + ( 2 ) \begin{aligned}\dfrac1{11}\color{magenta}{S_1}=&\ \dfrac{1^2}{11}+\dfrac{5^2}{11^2}+\dfrac{9^2}{11^3}+\dfrac{13^2}{11^4}+\dfrac{17^2}{11^5}+\cdots\Rightarrow(2)\end{aligned}

Subtracting equation ( 1 ) (1) with equation ( 2 ) (2)

( 1 1 11 ) S 1 = 1 2 1 + 5 2 1 2 11 + 9 2 5 2 1 1 2 + 1 3 2 9 2 1 1 3 + 1 7 2 1 3 2 1 1 4 + 10 11 S 1 = 1 + 4 × 6 11 + 4 × 14 1 1 2 + 4 × 22 1 1 3 + 4 × 30 1 1 4 + 10 11 S 1 = 1 + 4 ( 6 11 + 14 1 1 2 + 22 1 1 3 + 30 1 1 4 + ) ( 3 ) \begin{aligned}\left(1-\dfrac1{11}\right)\color{magenta}{S_1}=&\ \dfrac{1^2}{1}+\dfrac{5^2-1^2}{11}+\dfrac{9^2-5^2}{11^2}+\dfrac{13^2-9^2}{11^3}+\dfrac{17^2-13^2}{11^4}+\cdots\\\dfrac{10}{11}\color{magenta}{S_1}=&\ 1+\dfrac{\color{teal}4\times6}{11}+\dfrac{\color{teal}4\times14}{11^2}+\dfrac{\color{teal}4\times22}{11^3}+\dfrac{\color{teal}4\times30}{11^4}+\cdots\\\dfrac{10}{11}\color{magenta}{S_1}=&\ 1+\color{teal}4\color{#302B94}{\left(\dfrac6{11}+\dfrac{14}{11^2}+\dfrac{22}{11^3}+\dfrac{30}{11^4}+\cdots\right)}\Rightarrow(3)\end{aligned}

Let

S 2 = 6 11 + 14 1 1 2 + 22 1 1 3 + 30 1 1 4 + ( 4 ) \begin{aligned}\color{#302B94}{S_2=}&\ \color{#302B94}{\dfrac6{11}+\dfrac{14}{11^2}+\dfrac{22}{11^3}+\dfrac{30}{11^4}+\cdots}\Rightarrow(4)\end{aligned}

Multiplying with 1 11 \dfrac1{11} in equation ( 4 ) (4)

1 11 S 2 = 6 1 1 2 + 14 1 1 3 + 22 1 1 4 + 30 1 1 5 + ( 5 ) \begin{aligned}\dfrac1{11}\color{#302B94}{S_2}=&\ \dfrac6{11^2}+\dfrac{14}{11^3}+\dfrac{22}{11^4}+\dfrac{30}{11^5}+\cdots\Rightarrow(5)\end{aligned}

Subtracting equation ( 4 ) (4) with equation ( 5 ) (5)

( 1 1 11 ) S 2 = 6 11 + 14 6 1 1 2 + 22 14 1 1 3 + 30 22 1 1 4 + 10 11 S 2 = 6 11 + ( 8 1 1 2 + 8 1 1 3 + 8 1 1 4 + ) 10 11 S 2 = 6 11 + ( 8 1 1 2 1 1 11 ) 10 11 S 2 = 6 11 + ( 8 121 × 11 10 ) 10 11 S 2 = 6 11 + 4 55 S 2 = 30 + 4 55 × 11 10 = 17 25 \begin{aligned}\left(1-\dfrac1{11}\right)\color{#302B94}{S_2}=&\ \dfrac6{11}+\dfrac{14-6}{11^2}+\dfrac{22-14}{11^3}+\dfrac{30-22}{11^4}+\cdots\\\dfrac{10}{11}\color{#302B94}{S_2}=&\ \dfrac6{11}+\left(\dfrac8{11^2}+\dfrac8{11^3}+\dfrac8{11^4}+\cdots\right)\\\dfrac{10}{11}\color{#302B94}{S_2}=&\ \dfrac6{11}+\left(\dfrac{\frac8{11^2}}{1-\frac1{11}}\right)\\\dfrac{10}{11}\color{#302B94}{S_2}=&\ \dfrac6{11}+\left(\dfrac8{121}\times\dfrac{11}{10}\right)\\\dfrac{10}{11}\color{#302B94}{S_2}=&\ \dfrac6{11}+\dfrac4{55}\\\color{#302B94}{S_2}=&\ \dfrac{30+4}{55}\times\dfrac{11}{10}=\color{#302B94}{\dfrac{17}{25}}\end{aligned}

Instead S 2 \color{#302B94}{S_2} with 17 25 \color{#302B94}{\dfrac{17}{25}} in equation ( 3 ) (3)

10 11 S 1 = 1 + 4 ( 17 25 ) 10 11 S 1 = 1 + 68 25 S 1 = 25 + 68 25 × 11 10 = 1023 250 = 4.092 \begin{aligned}\dfrac{10}{11}\color{magenta}{S_1}=&\ 1+\color{teal}4\color{#302B94}{\left(\dfrac{17}{25}\right)}\\\dfrac{10}{11}\color{magenta}{S_1}=&\ 1+\dfrac{68}{25}\\\color{magenta}{S_1}=&\ \dfrac{25+68}{25}\times\dfrac{11}{10}=\color{magenta}{\dfrac{1023}{250}}=\boxed{4.092}\end{aligned}

Moderator note:

Very neat work as always. Wonderful!

This is an Arithmetic-Geometric Progression approach whereby we extend the summation method that takes advantage of Method of Differences.

For the sake of variety, and for a simpler solution. Can you think of a simpler approach?

Hint : Calculus. Differentiate n = 0 x n = 1 1 x \displaystyle \sum_{n=0}^\infty x^n = \frac1{1-x} .

As challenge master said,

The CALCULUS METHOD

The required summation is,

0 ( 4 n + 1 ) 2 1 1 n = 16 0 n 2 1 1 n + 8 0 n 1 1 n + 0 1 1 1 n \displaystyle \sum_0^\infty \frac{(4n +1)^2}{11^{n}} = 16\sum_0\frac{n^2}{11^n} + 8\sum_0\frac{n}{11^n} + \sum_0 \frac{1}{11^n}


Now,

Let A ( x ) = 1 + x + x 2 + x 3 + = ( 1 x ) 1 A(x) = 1 + x + x^2 + x^3 + \cdots = (1-x)^{-1}

0 a n x n = ( 1 x ) 1 , a n = 1 \Rightarrow \displaystyle \sum_0 a_n\cdot x^n = (1-x)^{-1}, a_n = 1


Now we want

1 x + 2 x 2 + 3 x 3 + = 0 n x n = 0 b n x n , b n = n a n \displaystyle 1x + 2x^2 + 3x^3 + \cdots = \sum_0 n\cdot x^n = \sum_0 b_n \cdot x^n, b_n = n a_n

1 x + 2 x 2 + 3 x 3 + = x d d x ( 1 + x + x 2 + x 3 + ) = x d d x ( 1 x ) 1 = x ( 1 x ) 2 \displaystyle \begin{aligned} 1x + 2x^2 + 3x^3 + \cdots &= x \cdot \frac{d}{dx}(1 + x + x^2 + x^3 + \cdots)\\ &=x\cdot \frac{d}{dx}(1-x)^{-1}\\ &=x(1-x)^{-2}\end{aligned}

0 b n x n = x ( 1 x ) 2 \displaystyle \Rightarrow \sum_0 b_n \cdot x^n = x(1-x)^{-2}


Then,

1 2 x + 2 2 x 2 + 3 2 x 3 + = 0 n 2 x n = 0 c n x n , c n = n 2 a n \displaystyle 1^2x + 2^2x^2 + 3^2x^3 + \cdots = \sum_0 n^2\cdot x^n = \sum_0 c_n \cdot x^n, c_n = n^2a_n

1 2 x + 2 2 x 2 + 3 2 x 3 + = x d d x ( x + 2 x 2 + 3 x 3 + ) = x d d x x ( 1 x ) 2 = x [ 2 x ( 1 x ) 3 + ( 1 x ) 2 ] = x ( 1 x ) 2 [ 1 + x 1 x ] \displaystyle \begin{aligned} 1^2x + 2^2x^2 + 3^2x^3 + \cdots &= x \cdot \frac{d}{dx}( x + 2x^2 + 3x^3 + \cdots)\\ &=x\cdot \frac{d}{dx}x(1-x)^{-2}\\ &=x\left[2x(1-x)^{-3} + (1-x)^{-2}\right]\\ &=x(1-x)^{-2}\left[\frac{1+x}{1-x}\right]\end{aligned}

0 c n x n = x ( 1 x ) 2 [ 1 + x 1 x ] \displaystyle \Rightarrow \sum_0 c_n \cdot x^n = x(1-x)^{-2}\left[\frac{1+x}{1-x}\right]


Lets get back!

0 ( 4 n + 1 ) 2 1 1 n = 16 0 n 2 1 1 n + 8 0 n 1 1 n + 0 1 1 1 n = 16 0 c n x n + 8 0 b n x n + 0 b n x n , x = 1 11 = 16 11 121 100 12 10 + 8 11 121 100 + 11 10 = 16 × 11 × 12 + 11 × 80 + 1100 1000 = 4.092 \displaystyle \begin{aligned}\sum_0^\infty \frac{(4n +1)^2}{11^{n}} &= 16\sum_0\frac{n^2}{11^n} + 8\sum_0\frac{n}{11^n} + \sum_0 \frac{1}{11^n}\\ &= 16\sum_0 c_n \cdot x^n + 8 \sum_0 b_n \cdot x^n + \sum_0 b_n \cdot x^n,&x = \frac{1}{11}\\ \\ &= \frac{16}{11}\frac{121}{100}\frac{12}{10} + \frac{8} {11}\frac{121}{100} + \frac{11}{10}\\ \\ &= \frac{16\times 11 \times 12 + 11\times 80 + 1100 }{1000}\\\\ &=\boxed{4.092}\end{aligned}

Kishore S. Shenoy - 5 years, 10 months ago

Love this!!

KATHLEEN KASPER - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...