(Color+beauti)ful Hexagon!

Geometry Level 4

As shown in the above figure, in a regular hexagon A B C D E F ABCDEF , the segments B D , B E , C A BD, BE, CA are drawn.

B D BD and C A CA intersect at point Q Q .

B E BE and C A CA intersect at point P P .

A ( B P Q ) A(\triangle BPQ) is colored green \color{#20A900}{\text{green}}

A ( B C D ) A(\triangle BCD) is colored red \color{#D61F06}{\text{red}}

Rest of the area is colored purple \color{#69047E}{\text{purple}}


If the ratio of areas of colors

purple : green : red = a : b : c \color{#69047E}{\text{purple}}:\color{#20A900}{\text{green}}:\color{#D61F06}{\text{red}}=\color{#69047E}{a}:\color{#20A900}{b}:\color{#D61F06}{c}

such that a , b , c N a,b,c \in \mathbb{N} , gcd ( a , b , c ) = 1 \text{gcd}(a,b,c)=1 .

Find a + b + c a+b+c


The answer is 36.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Subrata Dutta
Mar 28, 2015

If each side is a a , then B P = a 2 BP= \dfrac{a}{2} , P Q = a 2 3 PQ=\dfrac{a}{2\sqrt{3}} , A C = a 3 AC=a \sqrt{ 3} and A ( B C D ) = A ( A B C ) A(\triangle BCD) = A(\triangle ABC) and now its easy.

I've edited the LaTeX of your solution, please see how to use LaTeX mathematical formatting , use it when you post problems and solutions, to make it appear just the way you see it in books :) @Subrata Dutta

Aditya Raut - 6 years, 2 months ago

First note that Δ B C D \Delta BCD is congruent to Δ A B C . \Delta ABC. Now B C D = 12 0 \angle BCD = 120^{\circ} , so as Δ B C D \Delta BCD is isosceles we have that C B D = 3 0 , \angle CBD = 30^{\circ}, so P B Q = P B C C B D = 3 0 . \angle PBQ = \angle PBC - \angle CBD = 30^{\circ}.

The ratio of the areas of Δ P B Q \Delta PBQ to Δ P B C \Delta PBC is then tan ( 3 0 ) tan ( 6 0 ) = 1 3 . \frac{\tan(30^{\circ})}{\tan(60^{\circ})} = \dfrac{1}{3}.

Then since the area of Δ P B C \Delta PBC is 1 2 \frac{1}{2} that of Δ A B C \Delta ABC , and hence of Δ B C D \Delta BCD as well, the ratio of the areas of the green triangle to the red triangle is 1 : 6. 1 : 6.

Next, let O O be the center of the hexagon. Then B O D = B C D = 12 0 , \angle BOD = \angle BCD = 120^{\circ}, and thus the red triangle is 1 2 \frac{1}{2} the area of quadrilateral O B C D . OBCD. But the area of O B C D OBCD is 1 3 \frac{1}{3} that of the hexagon, and thus the area of the red triangle is 1 6 \frac{1}{6} that of the hexagon.

So now suppose the area of the hexagon is 36. 36. The area of the red triangle would then be 6 6 , and hence the area of the green triangle 1. 1. This would then give us an area for the purple region of 36 6 1 = 29. 36 - 6 - 1 = 29. Thus the desired ratio of areas of colors purple:green:red is 29 : 1 : 6 29:1:6 , and so a + b + c = 29 + 1 + 6 = 36 . a + b + c = 29 + 1 + 6 = \boxed{36}.

ah.. its a problem difficult to look at but easy when we do it..

Rishabh Tripathi - 6 years, 2 months ago

Δ B C D Δ A B C . . . . ( 1 ) C B D ( i . e . C B Q ) = B A C . . . ( 2 ) Let AB=BC=CD=DE=1. I n Δ A B C , A B = B C , A B C = 12 0 o B A C = A C B = 3 0 o = Q B C b y ( 2 ) o f s y m m e t r y , Δ P B A Δ P B C . Δ P B C i s a 90 : 60 : 30.... ( 3 ) P B C = 6 0 o . . . . . ( 4 ) P B Q = P B C Q B C = 3 0 o . I n Δ Q B P , Q P B = 9 0 o , P B Q = 3 0 o T h i s i s 60 : 30 : 90 Δ . ( 5 ) I n a 3 0 o : 6 0 o : 9 0 o Δ , A R E A = H y p . 2 3 8 = ( B i g l e g ) 2 3 6 . S i d e = 1 , h e x a g o n a l a r e a = 3 3 2 . . . . . . ( 6 ) F r o m ( 5 ) a r e a Δ P B Q = B P 2 3 6 = ( 1 2 ) 2 3 6 = 3 24 F r o m ( 3 ) a r e a Δ P B C = B C 2 3 8 = 3 8 = a r e a Δ A B C 2 = a r e a Δ B C D 2 . . . f r o m ( 1 ) . A r e a o f Δ B C D = 3 4 P u r p l e a r e a = h e x a g o n a l a r e a r e d a r e a g r e e n a r e a . = 3 3 2 3 4 3 24 . { 3 3 2 3 4 3 24 } : 3 4 : 3 24 : : { 36 1 6 } : 1 : 6 { 36 1 6 } + 1 + 6 = 36 \Delta~BCD~\equiv~\Delta~ABC ....(1)~~~\therefore ~ \angle CBD (i.e.~\angle ~CBQ )= \angle~BAC...(2)\\\text{Let AB=BC=CD=DE=1. }~~~~~~~~In~\Delta ABC,~AB=BC, \angle ABC=120^o\\\therefore \angle BAC=\angle ACB=30^o =\angle QBC~~~by~~~(2)\\\because of symmetry, \Delta ~PBA~\equiv~\Delta~PBC . ~\therefore~\Delta PBC ~is~a~90:60:30....\color{#D61F06}{(3)}\\\angle PBC=60^o.....(4)~~~~\angle PBQ=\angle PBC-\angle QBC=30^o.\\In ~ \Delta~ QBP,~\angle QPB=90^o,~\angle PBQ=30^o~\therefore ~This~is~60:30:90~ \Delta .\color{#3D99F6}{(5)}\\In~a~30^o:60^o:90^o~~\Delta, ~~AREA=\dfrac{Hyp.^2 *\sqrt3}{8}=\dfrac{(Big~leg)^2 *\sqrt3}{6}.\\ Side=1, hexagonal ~area=\dfrac{3*\sqrt3}{2}......\color{#69047E}{(6)} \\From~~(5)~~\color{#3D99F6}{area~\Delta PBQ =\dfrac{BP^2 *\sqrt3}{6}= \dfrac{(\dfrac{1}{2})^2 *\sqrt3}{6 }=\large \dfrac{\sqrt3}{24} }\\From~~(3)~~area~\Delta PBC =\dfrac{BC^2 *\sqrt3}{8}= \dfrac{\sqrt3}{8} =\dfrac{area~\Delta ABC}{2}\\=\dfrac{area~\Delta BCD}{2}...from~(1).~~\therefore~\color{#D61F06}{Area~of~\Delta BCD=\large \dfrac{\sqrt3}{4} }\\Purple~area=hexagonal~area~-red~area~-~green~area.\\\large =\color{#69047E}{\dfrac{3*\sqrt3}{2}-\dfrac{\sqrt3}{4}- \dfrac{\sqrt3}{24}.}\\ \{\dfrac{3*\sqrt3}{2}-\dfrac{\sqrt3}{4}- \dfrac{\sqrt3}{24}\}:\dfrac{\sqrt3}{4}: \dfrac{\sqrt3}{24}::\{36-1-6\}:1:6\\\therefore \large \{36-1-6\}+1+6= \boxed{36} \\~~\\
Thank you, Mr. Brian, the equivalence of ABC and BCD, was taken from your solution. That avoided construction of Altitude in BCD. \large \text{Thank you, Mr. Brian, the equivalence of ABC and BCD, }\\ \large \text{was taken from your solution. }\\\large \text{That avoided construction of Altitude in BCD.}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...