Sometimes logs logs our mind too!

Algebra Level 3

a = log 27 8 log 3 2 b = ( 1 2 log 2 5 ) ( 1 5 log 5 0.1 ) c = 2 log 2 5 5 log 5 2 \begin{aligned} a & = & \frac { \log_{27} 8}{\log_ 3 2} \\ b & = & \left ( \frac 1 {2^{\log_2 5}} \right ) \left ( \frac 1 {5^{\log_5 0.1}}\right ) \\ c & = & 2^{\sqrt{\log_2 5}} - 5^{\sqrt{\log_5 2}} \\ \end{aligned}

What is the value of a + b + c a+b+c ?

Want some more than click here


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Using the exponent and change of base rules, we have that

a = 3 log 27 ( 2 ) log 3 ( 2 ) = 3 log 3 ( 2 ) log 3 ( 27 ) log 3 ( 2 ) = 1 a = \dfrac{3*\log_{27}(2)}{\log_{3}(2)} = \dfrac{3*\frac{\log_{3}(2)}{\log_{3}(27)}}{\log_{3}(2)} = 1 and b = ( 1 5 ) ( 1 0.1 ) = 2. b = \left(\dfrac{1}{5}\right)\left(\dfrac{1}{0.1}\right) = 2.

To determine c , c, note that log 2 ( 5 ) = log 2 ( 5 ) log 2 ( 5 ) = log 2 ( 5 ) log 5 ( 2 ) . \sqrt{\log_{2}(5)} = \dfrac{\log_{2}(5)}{\sqrt{\log_{2}(5)}} = \log_{2}(5)\sqrt{\log_{5}(2)}. Thus

c = ( 2 log 2 ( 5 ) ) log 5 ( 2 ) 5 log 5 ( 2 ) = 5 log 5 ( 2 ) 5 log 5 ( 2 ) = 0. c = \large (2^{\log_{2}(5)})^{\sqrt{\log_{5}(2)}} - 5^{\sqrt{\log_{5}(2)}} = 5^{\sqrt{\log_{5}(2)}} - 5^{\sqrt{\log_{5}(2)}} = 0.

Therefore a + b + c = 1 + 2 + 0 = 3 . a + b + c = 1 + 2 + 0 = \boxed{3}.

What about this method

a = l o g 27 8 l o g 3 2 = l o g 3 3 2 3 l o g 3 2 = l o g 3 ( 2 3 ) 1 3 l o g 3 2 = l o g 3 2 l o g 3 2 = 1 a= \frac{log_{27}8}{log_{3}2} = \frac{log_{3^3} 2^3}{log_{3}2} =\frac{log_{3}(2^3)^\frac{1}{3}}{log_{3}2} = \frac{log_{3}2}{log_{3}2} = 1

b = ( 1 2 l o g 2 5 ) ( 1 5 l o g 5 0.1 ) = ( 1 5 ) ( 1 0.1 ) = ( 1 5 ) ( 10 ) = 2 b= (\frac{1}{2^{log_{2}5}})(\frac{1}{5^ {log_{5}0.1}}) = (\frac{1}{5})(\frac{1}{0.1}) = (\frac{1}{5})(10) = 2

To find c , c, see that log 2 ( 5 ) = log 2 ( 5 ) log 2 ( 5 ) = log 2 ( 5 ) log 5 ( 2 ) . \sqrt{\log_{2}(5)} = \dfrac{\log_{2}(5)}{\sqrt{\log_{2}(5)}} = \log_{2}(5)\sqrt{\log_{5}(2)}.

Thus

c = ( 2 log 2 ( 5 ) ) log 5 ( 2 ) 5 log 5 ( 2 ) = 5 log 5 ( 2 ) 5 log 5 ( 2 ) = 0. c = (2^{\log_{2}(5)})^{\sqrt{\log_{5}(2)}} - 5^{\sqrt{\log_{5}(2)}} = 5^{\sqrt{\log_{5}(2)}} - 5^{\sqrt{\log_{5}(2)}} = 0.

Therefore a + b + c = 1 + 2 + 0 = 3 . a + b + c = 1 + 2 + 0 = \boxed{3}.

Abhisek Mohanty - 6 years, 2 months ago

I failed to evaluate c

Vighnesh Raut - 6 years, 2 months ago

Log in to reply

same here . I failed to calculate c

Sai Ram - 5 years, 2 months ago

Me too, failed to calculate c

Shivansh Jaiswal - 4 years, 10 months ago

Failed to calculate C

I Gede Arya Raditya Parameswara - 4 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...