Combination

n C x : n C x + 1 : n C x + 2 = 2 : 3 : 4 ^{ n }{ { { C } } }_{ x }:^{ n }{ { { C } } }_{ x+1 }:^{ n }{ { { C } } }_{ x+2 }=2:3:4

Find n × x n \times x


The answer is 442.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 26, 2014

n C x : n C x + 1 : n C x + 2 = 2 : 3 : 4 ^nC_x:^nC_{x+1}:^nC_{x+2} = 2:3:4

n ! x ! ( n x ) ! : n ! ( x + 1 ) ! ( n x 1 ) ! : n ! ( x + 2 ) ! ( n x 2 ) ! = 2 : 3 : 4 \Rightarrow \dfrac {n!}{x!(n-x)!} : \dfrac {n!}{(x+1)!(n-x-1)!} : \dfrac {n!}{(x+2)!(n-x-2)!} = 2:3:4

{ ( x + 1 ) ! ( n x 1 ) ! x ! ( n x ) ! = x + 1 n x = 2 3 5 x = 2 n 3 . . . ( 1 ) ( x + 2 ) ! ( n x 2 ) ! ( x + 1 ) ! ( n x 1 ) ! = x + 2 n x 1 = 3 4 7 x = 3 n 11 . . . ( 2 ) \Rightarrow \begin {cases} \dfrac {(x+1)!(n-x-1)!} {x!(n-x)!} = \dfrac {x+1} {n-x} = \dfrac {2}{3} & \Rightarrow 5x = 2n - 3 & ...(1)\\ \dfrac {(x+2)!(n-x-2)!} {(x+1)!(n-x-1)!} = \dfrac {x+2} {n-x-1} = \dfrac {3}{4} & \Rightarrow 7x = 3n - 11 & ...(2) \end {cases}

3 × 3 \times eqn 1 - 2 × 2\times eqn 2:

{ 15 x = 6 n 9 . . . ( 1 a ) 14 x = 6 n 22 . . . ( 2 a ) x = 13 n = 34 \Rightarrow \begin {cases} 15x = 6n - 9 & ...(1a)\\ 14x = 6n - 22 & ...(2a) \end {cases} \Rightarrow x = 13 \quad \Rightarrow n = 34

Therefore the required answer: n ˙ x = 34 × 13 = 442 n\dot{} x = 34\times 13 = \boxed {442}

Abdulrahman, it was unclear where n . x n . x meant "place a decimal point there" or "multiply these numbers". Based on the above solution, I have edited it to n × x n \times x .

Calvin Lin Staff - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...