Combinations

( 1 + x ) 7 + ( 1 + x ) 8 + ( 1 + x ) 9 + ( 1 + x ) 10 + . . . + ( 1 + x ) 10000000 (1+x)^{7}+(1+x)^{8}+(1+x)^{9}+(1+x)^{10}+...+(1+x)^{10000000}

What is the coefficient of x 7 x^7 in the expansion of the expression above?

( 10000001 8 ) \binom {10000001}8 ( 10000000 8 ) \binom {10000000}8 ( 100000 8 ) \binom {100000}8 ( 1000000 8 ) \binom {1000000}8

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

The coefficient of x 7 x^7 of each factor a k a_k is as below:

( 1 + x ) 7 a 0 = ( 7 7 ) + ( 1 + x ) 8 a 1 = ( 8 7 ) + ( 1 + x ) 9 a 2 = ( 9 7 ) + ( 1 + x ) 10 a 3 = ( 10 7 ) + + ( 1 + x ) N a N 7 = ( N 7 ) \overbrace{(1+x)^7}^{a_0 = \binom 77} + \overbrace{(1+x)^8}^{a_1=\binom 87} + \overbrace{(1+x)^9}^{a_2=\binom 97} + \overbrace{(1+x)^{10}}^{a_3=\binom {10}7} + \cdots + \overbrace{(1+x)^N}^{a_{N-7}=\binom N7}

Therefore, the coefficient of x 7 x^7 for the expression is A N 7 = k = 0 N 7 a k = k = 0 N 7 ( k + 7 7 ) = k = 0 N 7 ( k + 7 k ) \displaystyle A_{N-7} = \sum_{k=0}^{N-7} a_k = \sum_{k=0}^{N-7} \binom {k+7}7 = \sum_{k=0}^{N-7} \binom {k+7}k . From the first few A n A_n , it appears that A n = ( n + 8 n ) A_n = \dbinom {n+8}n . Let us prove the claim to be true for all n 0 n \ge 0 by induction.

Proof: For n = 0 n=0 , A 0 = a 0 = ( 7 0 ) = 1 = ( 8 0 ) A_0 = a_0 = \dbinom 70 = 1 = \dbinom 80 indicating that the claim is true for n = 0 n=0 . Now assuming the claim is true for n n , then:

A n + 1 = A n + ( n + 8 n + 1 ) = ( n + 8 n ) + ( n + 8 n + 1 ) By Pascal’s formula = ( n + 9 n + 1 ) \begin{aligned} A_{n+1} & = A_n + \binom {n+8}{n+1} \\ & = \color{#3D99F6} \binom {n+8}n + \binom {n+8}{n+1} & \small \color{#3D99F6} \text{By Pascal's formula} \\ & = \color{#3D99F6} \binom {n+9}{n+1} \end{aligned}

Therefore, the claim is also true for n + 1 n+1 and hence true for all n 0 n \ge 0 . Then we have A 1 0 7 7 = ( 1 0 7 + 1 1 0 7 7 ) = ( 10000001 8 ) A_{10^7-7} = \dbinom {10^7+1}{10^7-7} = \boxed{\dbinom {10000001}8} .

Xi Guan
Jun 2, 2018

( 1 + x ) n (1+x)^{n} = n C r nCr × x r x^{r} ,

so, x 7 x^{7} in ( 1 + x ) n (1+x)^{n} = n C 7 nC7 × x 7 x^{7}

so

the coefficient of x 8 x^{8} in ( 1 + x ) 8 (1+x)^{8} + ( 1 + x ) 9 (1+x)^{9} + ( 1 + x ) 10 (1+x)^{10} +...+ ( 1 + x ) 10000000 (1+x)^{10000000}

= 7 C 7 7C7 + 8 C 7 8C7 + 9 C 7 9C7 + 10 C 7 10C7 +...+ 10000000 C 7 10000000C7

= 8 C 8 8C8 + 8 C 7 8C7 + 9 C 7 9C7 +...+ 10000000 C 7 10000000C7 ------------------------------------ ( because n C n nCn = r C r rCr = k C k kCk = 1 )

= 9 C 8 9C8 + 9 C 7 9C7 + 10 C 7 10C7 +...+ 10000000 C 7 10000000C7 ------------------------------------ ( because n C n nCn = r C r rCr = k C k kCk = 1 )

= 10 C 8 10C8 + 10 C 7 10C7 +...+ 10000000 C 7 10000000C7 ------------------------------------ ( because n C n nCn + n C r 1 nCr-1 = n + 1 C r n+1Cr )

= 9999999 C 8 9999999C8 + 9999999 C 7 9999999C7 + 10000000 C 7 10000000C7 ------------------------------------ ( because n C n nCn + n C r 1 nCr-1 = n + 1 C r n+1Cr )

= 10000000 C 8 10000000C8 + 10000000 C 7 10000000C7 ------------------------------------ ( because n C n nCn + n C r 1 nCr-1 = n + 1 C r n+1Cr )

= 10000001 C 8 10000001C8 ------------------------------------ ( because n C n nCn + n C r 1 nCr-1 = n + 1 C r n+1Cr )

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...