There are exactly ten ways of selecting three from five, 12345:
123, 124, 125, 134, 135, 145, 234, 235, 245, and 345
In combinatorics, we use the notation, 5C3 = 10.
In general,
.
,where r ≤ n, n! = n×(n−1)×...×3×2×1, and 0! = 1. It is not until n = 23, that a value exceeds one-million: 23C10 = 1144066.
How many, not necessarily distinct, values of nCr, for 1 ≤ n ≤ 100, are greater than one-million?
This problem is from a site known as project euler
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
There are two opportunities to avoid a lot of redundant computation here:
This doesn't make much of a difference for maxn=100 though, but going to 10k takes forever without it...