Combinatorial Summations!

S N ( n ) = k n ( N 2 k ) ( k n ) \large{ S_N(n) = \displaystyle \sum_{k \geq n} \binom{N}{2k} \binom{k}{n} }

Let S N ( n ) S_N(n) be the combinatorial summation as described above for integers n 0 n \geq 0 and N 1 N \geq 1 . Generalize S N ( n ) S_N(n) in terms of N N and n n . Then using a calculator, evaluate the value of S 40 ( 15 ) S_{40}(15) .


The answer is 2677768192.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Pi Han Goh
Jul 29, 2016

Let A n = k ( n 2 k ) ( k m ) \displaystyle A_n = \sum_{k} \dbinom n{2k} \dbinom km , then

n = 0 A n x n = n = 0 ( k ( n 2 k ) ( k m ) ) x n = k = 0 ( n ( n 2 k ) x n ) = k = 0 ( k m ) x 2 k ( 1 x ) 2 k + 1 = 1 1 x k = 0 ( k m ) ( x 2 ( 1 x ) 2 ) k = 1 1 x [ ( x 2 ( 1 x ) 2 ) m ÷ ( 1 x 2 ( 1 x ) 2 ) m + 1 ] = ( 1 x ) x 2 m ( 1 2 x ) m + 1 = ( 1 x ) ( x 2 ) m ( 2 x ) m ( 1 2 x ) m + 1 = ( 1 x ) ( x 2 ) m r = m ( r m ) ( 2 x ) r \begin{aligned} \sum_{n=0}^\infty A_n x^n &=& \sum_{n=0}^\infty \left( \sum_k \dbinom n{2k} \dbinom km \right) x^n \\ &=& \sum_{k=0}^\infty \left( \sum_n \dbinom n{2k} x^n \right) \\ &=& \sum_{k=0}^\infty \dbinom km \dfrac{x^{2k}}{(1-x)^{2k+1}} \\ &=& \dfrac1{1-x} \sum_{k=0}^\infty \dbinom km \left( \dfrac{x^2}{(1-x)^2} \right)^k \\ &=& \dfrac1{1-x} \left [ \left( \dfrac{x^2}{(1-x)^2} \right)^m \div \left( 1 - \dfrac{x^2}{(1-x)^2} \right)^{m+1} \right ] \\ &=& (1-x) \dfrac{x^{2m}}{(1-2x)^{m+1}} \\ &=& (1-x) \left( \dfrac x2\right)^m \dfrac{(2x)^m}{(1-2x)^{m+1}} \\ &=& (1-x) \left( \dfrac x2\right)^m \sum_{r=m}^\infty \dbinom rm (2x)^r \end{aligned}

By comparing the coefficients of x n x^n we get that

A n = 1 2 m [ ( n m m ) 2 n m ( n m 1 m ) 2 n m 1 ] = 2 n 2 m 1 [ 2 ( n m m ) n 2 m n m ( n m m ) ] = 2 n 2 m 1 n n m ( n m m ) \begin{aligned} A_n &=& \dfrac1{2^m} \left [ \dbinom{n-m}m 2^{n-m} - \dbinom{n-m-1}m 2^{n-m-1}\right ] \\ &=& 2^{n-2m-1} \left [2\dbinom{n-m}m -\dfrac{n-2m}{n-m} \dbinom{n-m}m \right ] \\ &=& 2^{n-2m-1} \dfrac n{n-m} \dbinom{n-m}m \end{aligned}

In this case, n = 40 n=40 and m = 15 m=15 . The result follows.

(+1) The final result is beautiful!

Ishan Singh - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...