Combinatorics

i = 2 99 ( 1 ) i 99 ! i ! ( 99 i ) ! = ? \large \sum_{i=2}^{99} \frac{(-1)^i99!}{i!(99-i)!} = \ ?

100 100 99 99 98 98 0 0 1 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

i = 2 99 ( 1 ) i 99 ! i ! ( 99 i ) ! = \sum_{i=2}^{99} {(-1)^i}\frac{99!}{i!(99-i)!} = i = 0 99 ( 1 ) i 99 ! i ! ( 99 i ) ! ( 1 ) 1 99 ! 1 ! ( 99 1 ) ! ( 1 ) 0 99 ! 0 ! ( 99 0 ) ! = \sum_{i=0}^{99} {(-1)^i}\frac{99!}{i!(99-i)!} - {(-1)^1}\frac{99!}{1!(99-1)!} - {(-1)^0}\frac{99!}{0!(99-0)!}= i = 0 99 ( 1 ) 99 i ( 1 ) i 99 ! i ! ( 99 i ) ! + 99 1 = \sum_{i=0}^{99} {(1)^{99-i}(-1)^i}\frac{99!}{i!(99-i)!} + 99 -1 = [ 1 + ( 1 ) ] 99 + 98 = [1+(-1)]^{99}+98 = 0 + 98 = 98 0+98 =98

Chew-Seong Cheong
Dec 11, 2018

S = k = 2 99 ( 1 ) k 99 ! k ! ( 99 k ! ) = 99 ! 2 ! 97 ! 99 ! 3 ! 96 ! + 99 ! 4 ! 95 ! + 99 ! 44 ! 45 ! 99 ! 45 ! 44 ! + 99 ! 95 ! 4 ! + 99 ! 96 ! 3 ! 99 ! 97 ! 2 ! + 99 ! 98 ! 1 ! 99 ! 99 ! 0 ! = 99 ! 2 ! 97 ! 99 ! 3 ! 96 ! + 99 ! 4 ! 95 ! + 99 ! 44 ! 45 ! 99 ! 45 ! 44 ! + 99 ! 95 ! 4 ! + 99 ! 96 ! 3 ! 99 ! 97 ! 2 ! + 99 1 = 98 \begin{aligned} S & = \sum_{k=2}^{99} \frac {(-1)^k99!}{k!(99-k!)} \\ & = {\color{#3D99F6} \frac {99!}{2!97!}} - {\color{#D61F06} \frac {99!}{3!96!}} + {\color{#20A900} \frac {99!}{4!95!}} - \cdots + {\color{#69047E} \frac {99!}{44!45!}} - {\color{#69047E} \frac {99!}{45!44!}} + \cdots - {\color{#20A900} \frac {99!}{95!4!}} + {\color{#D61F06} \frac {99!}{96!3!}} - {\color{#3D99F6} \frac {99!}{97!2!}} + \frac {99!}{98!1!} - \frac {99!}{99!0!} \\ & = {\color{#3D99F6} \cancel{\frac {99!}{2!97!}}} - {\color{#D61F06} \cancel{\frac {99!}{3!96!}}} + {\color{#20A900} \cancel{\frac {99!}{4!95!}}} - \cdots + {\color{#69047E} \cancel{\frac {99!}{44!45!}}} - {\color{#69047E} \cancel{\frac {99!}{45!44!}}} + \cdots - {\color{#20A900} \cancel{\frac {99!}{95!4!}}} + {\color{#D61F06} \cancel{\frac {99!}{96!3!}}} - {\color{#3D99F6} \cancel{\frac {99!}{97!2!}}} + 99 - 1 \\ & = \boxed{98} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...