Combine form

Algebra Level 3

x log 10 5 + 5 log 10 x = 50 \large x^{\log_{10} 5} + 5^{\log_{10} x} = 50

Solve for real x x satisfying the equation above.


The answer is 100.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jan 31, 2017

x log 10 5 + 5 log 10 x = 50 a log b = b log a x log 10 5 + x log 10 5 = 50 2 x log 10 5 = 50 x log 10 5 = 25 log 10 ( x log 10 5 ) = log 25 log 10 5 log 10 x = 2 log 10 5 log 10 x = 2 x = 100 \begin{aligned} x^{\log_{10} 5} + {\color{#3D99F6}5^{\log_{10} x}} & = 50 & \small \color{#3D99F6} a^{\log b} = b^{\log a} \\ x^{\log_{10} 5} + {\color{#3D99F6}x^{\log_{10} 5}} & = 50 \\ 2 x^{\log_{10} 5} & = 50 \\ x^{\log_{10} 5} & = 25 \\ \log_{10} \left(x^{\log_{10} 5}\right) & = \log 25 \\ \log_{10} 5 \log_{10} x & = 2 \log_{10} 5 \\ \log_{10} x & = 2 \\ \implies x & = \boxed{100} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...