Simplify Top and Bottom First

Algebra Level 2

( 4 100 + 2 150 ) ( 4 100 2 150 ) ( 2 + 2 2 + 2 3 + + 2 100 ) = ? \large \dfrac{(4^{100} + 2^{150})(4^{100}- 2^{150}) }{(2+2^2+2^3+\cdots+2^{100} )} = \, ?

2 150 2^{150} 2 199 2^{199} 2 100 2^{100} 1 1 2 299 2^{299} 100 100

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

J C
Mar 17, 2016

The numerator will come out to ( 4 100 + 2 150 ) ( 4 100 2 150 ) = 4 200 2 300 = 2 400 2 300 = 2 300 ( 2 100 1 ) (4^{100}+2^{150})(4^{100}-2^{150})=4^{200}-2^{300}=2^{400}-2^{300}=2^{300}(2^{100}-1)

So 2 1 = 2 , 2 1 + 2 2 = 6 , 2 1 + 2 2 + 2 3 = 14 2^1 = 2, 2^1+2^2 = 6, 2^1 + 2^2 + 2^3 = 14 .

In general, the sum of 2 1 2^1 to 2 n = 2 n + 1 2 , 2^n = 2^{n+1}-2, so the sum of 2 1 2^1 to 2 100 = 2 101 2 1 = 2 1 ( 2 100 1 ) 2^{100} = 2^{101}-2^1 = 2^1(2^{100} - 1) , which is the denominator.

So the 2 100 1 2^{100}-1 cancels out in the numerator and denominator, leaving us with 2 300 2 1 \frac{2^{300}}{2^1} or 2 299 2^{299}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...