Combo Algebra

Compute ( 100 1 ) + 2 ( 100 2 ) + + 100 ( 100 100 ) . \dbinom{100}{1} + 2\dbinom{100}{2} +\ldots + 100\dbinom{100}{100}. If your answer is k 2 n k \cdot 2^n , where n n and k k are positive integers and k k is odd, find n + k n+k .


The answer is 126.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Otto Bretscher
Oct 4, 2015

We have ( x + 1 ) 100 = k = 0 100 ( 100 k ) x k (x+1)^{100}=\sum_{k=0}^{100}{100 \choose k}x^k . Differentiation gives 100 ( x + 1 ) 99 = k = 0 100 k ( 100 k ) x k 1 100(x+1)^{99}=\sum_{k=0}^{100}k{100 \choose k}x^{k-1} . Plug in x = 1 x=1 to find k = 0 100 k ( 100 k ) = 100 ( 2 99 ) = 25 ( 2 101 ) \sum_{k=0}^{100}k{100 \choose k}=100(2^{99})=25(2^{101}) , with 25 + 101 = 126 25+101=\boxed{126}

I forgot converting it into odd

Aakash Khandelwal - 5 years, 8 months ago

Log in to reply

Same here!! :D

Youssof Rabie - 5 years, 8 months ago

This is so elegant... @Otto Bretscher

Jessica Wang - 5 years, 8 months ago

Log in to reply

It uses calculus, so it's not elegant ;)

Patrick Engelmann - 5 years, 6 months ago

Log in to reply

One could argue that Calculus is the most elegant system of thought ever developed. ;)

Otto Bretscher - 5 years, 6 months ago
Alan Yan
Oct 4, 2015

We will count the expression in two ways. Notice that if we have a committee of 100 100 people, the given expression is just the number of ways to choose a non-empty subcommittee, and then choose a president amoung the subcommittee.

However, this is equivalent to choosing the president first, and then deciding the people who are going to be in the subcommitte.

We can choose the president in 100 100 ways. Each of the other people have two choices: they are either in the subcommittee or they are not in the subcommitte, therefore this is 2 99 2^{99} for all 99 other people.

Therefore, the number of ways is just 100 2 99 = 25 2 101 25 + 101 = 126 100 \cdot 2^{99} = 25 \cdot 2^{101} \implies 25 + 101 = \boxed{126}

Note this gives us an identity: k = 1 n k ( n k ) = n 2 n 1 \sum_{k = 1}^{n}{k{n \choose k}} = n \cdot 2^{n-1}

Aareyan Manzoor
Oct 4, 2015

by the binomial theorm: n = 0 100 ( 100 n ) = 2 100 \sum_{n=0}^{100} \binom{100}{n} = 2^{100} we need to find S = n = 0 100 n ( 100 n ) S=\sum_{n=0}^{100} n\binom{100}{n} this equals S = 0 ( 100 0 ) + 1 ( 100 1 ) + 2 ( 100 2 ) + . . . . + 98 ( 100 98 ) + 99 ( 100 99 ) + 100 ( 100 100 ) S=0\binom{100}{0}+1\binom{100}{1}+2\binom{100}{2}+....+98\binom{100}{98}+99\binom{100}{99}+100\binom{100}{100} take all n to be 100: S = 100 ( 100 0 ) + 100 ( 100 1 ) + . . . . + 100 ( 100 99 ) + 100 ( 100 100 ) ( 100 ( 100 0 ) + 99 ( 100 1 ) + . . . + 1 ( 100 99 ) + 0 ( 100 100 ) ) S=100\binom{100}{0}+100\binom{100}{1}+....+100\binom{100}{99}+100\binom{100}{100}-(100\binom{100}{0}+99\binom{100}{1}+...+1\binom{100}{99}+0\binom{100}{100}) since ( n k ) = ( n n k ) \binom{n}{k}=\binom{n}{n-k} : S = 100 2 100 ( 100 ( 100 100 ) + 99 ( 100 99 ) + . . . + 1 ( 100 1 ) + 0 ( 100 0 ) S=100*2^{100}-(100\binom{100}{100}+99\binom{100}{99}+...+1\binom{100}{1}+0\binom{100}{0} S = 100 2 100 S S=100*2^{100}-S S = 100 2 99 = 25 2 101 S=100*2^{99}=25*2^{101} 25 + 101 = 126 25+101=\boxed{126}

Matthew Kendall
Oct 4, 2015

Note that ( n 0 ) + ( n 1 ) + ( n 2 ) + . . . + ( n n ) = 2 n \dbinom{n}{0} + \dbinom{n}{1} + \dbinom{n}{2} + ... + \dbinom{n}{n} = 2^n . From this fact, we do some algebra: ( 100 1 ) + 2 ( 100 2 ) + . . . + 100 ( 100 100 ) = k = 1 100 k ( 100 k ) = k = 1 100 k 100 ! ( 100 k ) ! k ! \dbinom{100}{1} + 2\dbinom{100}{2} + ... + 100\dbinom{100}{100} = \displaystyle\sum\limits_{k=1}^{100} k\dbinom{100}{k} = \sum\limits_{k=1}^{100} k\frac{100!}{(100-k)!k!} = 100 k = 1 n ( 100 1 ) ! ( 100 k ) ! ( k 1 ) ! = 100 k = 1 n ( 99 k 1 ) = 100 2 99 = 25 2 101 . = 100 \sum\limits_{k=1}^n \frac{(100-1)!}{(100-k)!(k-1)!} = 100 \sum\limits_{k=1}^n \dbinom{99}{k-1} = 100 \cdot 2^{99} = 25 \cdot 2^{101}. So our final answer must be 25 + 101 = 126 25 + 101 = \boxed{126} .

Nice work (upvote)! Just a detail: Your first sum should start with ( n 0 ) {n \choose 0}

Otto Bretscher - 5 years, 8 months ago

Log in to reply

Yes, you are right, it is now edited

Matthew Kendall - 5 years, 8 months ago

Log in to reply

did the same thing but i wrote it as 100 X 2^99 and typed 199 as the answer . i think i need to read the problems more attentively

Utkarsh Grover - 5 years, 8 months ago
Lam Yet Sin
Oct 12, 2015

Take note that ( n r ) = ( n n r ) \left( \begin{matrix} n \\ r \end{matrix} \right) =\left( \begin{matrix} n \\ n-r \end{matrix} \right)

Rewrite the equation, we get ( 100 99 ) + 2 ( 100 98 ) + 3 ( 100 97 ) + . . . + 100 ( 100 0 ) \left( \begin{matrix} 100 \\ 99 \end{matrix} \right) +2\left( \begin{matrix} 100 \\ 98 \end{matrix} \right) +3\left( \begin{matrix} 100 \\ 97 \end{matrix} \right) +...+100\left( \begin{matrix} 100 \\ 0 \end{matrix} \right)

By rearranging, we get 100 ( ( 100 0 ) + 99 ( 100 1 ) + 98 ( 100 2 ) + . . . + ( 100 99 ) 100(\left( \begin{matrix} 100 \\ 0 \end{matrix} \right) +99\left( \begin{matrix} 100 \\ 1 \end{matrix} \right) +98\left( \begin{matrix} 100 \\ 2 \end{matrix} \right) +...+\left( \begin{matrix} 100 \\ 99 \end{matrix} \right)

By adding with the original equation, we get 100 ( ( 100 0 ) + 100 ( 100 1 ) + 100 ( 100 2 ) + . . . + 100 ( 100 99 ) + 100 ( 100 100 ) = 100 r = 0 100 ( 100 r ) 100(\left( \begin{matrix} 100 \\ 0 \end{matrix} \right) +100\left( \begin{matrix} 100 \\ 1 \end{matrix} \right) +100\left( \begin{matrix} 100 \\ 2 \end{matrix} \right) +...+100\left( \begin{matrix} 100 \\ 99 \end{matrix} \right) +100\left( \begin{matrix} 100 \\ 100 \end{matrix} \right) =100\sum _{ r=0 }^{ 100 }{ \left( \begin{matrix} 100 \\ r \end{matrix} \right) }

It is known that r = 0 n ( n r ) = 2 n \sum _{ r=0 }^{ n }{ \left( \begin{matrix} n \\ r \end{matrix} \right) } ={ 2 }^{ n }

Thus, we get 2 k 2 n = 100 2 100 2k\cdot2^{n}=100\cdot2^{100}

k 2 n = 50 2 100 = 25 2 101 k\cdot2^n=50\cdot2^{100}=25\cdot2^{101}

Thus, k + n = 126 k+n=\boxed{126}

( 1 + x ) 100 = ( 100 0 ) + ( 100 1 ) x + ( 100 2 ) x 2 + . . . + ( 100 100 ) x 100 d d x ( 1 + x ) 100 = ( 100 1 ) + 2 ( 100 2 ) x + 3 ( 100 3 ) x 2 + . . . + 100 ( 100 100 ) x 99 Put x = 1 100 ( 1 + [ 1 ] ) 99 = ( 100 1 ) + 2 ( 100 2 ) [ 1 ] + 3 ( 100 3 ) [ 1 ] + . . . + 100 ( 100 100 ) [ 1 ] = 100 ˙ 2 99 = 25 ˙ 2 101 k + n = 25 + 101 = 126 \begin{aligned} (1+x)^{100} & = \begin{pmatrix} 100 \\ 0 \end{pmatrix} + \begin{pmatrix} 100 \\ 1 \end{pmatrix} x + \begin{pmatrix} 100 \\ 2 \end{pmatrix} x^2 +... + \begin{pmatrix} 100 \\ 100 \end{pmatrix}x^{100} \\ \Rightarrow \frac{d}{dx} (1+x)^{100} & = \begin{pmatrix} 100 \\ 1 \end{pmatrix} + 2 \begin{pmatrix} 100 \\ 2 \end{pmatrix} x + 3 \begin{pmatrix} 100 \\ 3 \end{pmatrix} x^2 +... + 100 \begin{pmatrix} 100 \\ 100 \end{pmatrix}x^{99} \quad \quad \color{#3D99F6}{\text{Put } x = 1} \\ 100 (1+\color{#3D99F6}{[1]})^{99} & = \begin{pmatrix} 100 \\ 1 \end{pmatrix} + 2 \begin{pmatrix} 100 \\ 2 \end{pmatrix}\color{#3D99F6}{[1]} + 3 \begin{pmatrix} 100 \\ 3 \end{pmatrix} \color{#3D99F6}{[1]} +... + 100 \begin{pmatrix} 100 \\ 100 \end{pmatrix}\color{#3D99F6}{[1]} \\ & = 100\dot{}2^{99} = 25\dot{}2^{101} \\ & \\ \Rightarrow k + n & = 25 + 101 = \boxed{126} \end{aligned}

veri gut...

Soner Karaca - 5 years, 8 months ago

Very neat! Thanks!

Otuya Odeke - 5 years, 8 months ago
Patrick Engelmann
Dec 11, 2015

We have ( n m ) = ( n m n ) \dbinom{n}{m} = \dbinom{n}{m - n} and ( n 1 ) + ( n 2 ) + + ( n n 1 ) + ( n n ) = 2 n \dbinom{n}{1} + \dbinom{n}{2} + \cdots + \dbinom{n}{n-1} + \dbinom{n}{n} = 2^{n}

Thus X = ( 100 1 ) + 2 ( 100 2 ) + + 100 ( 100 100 ) = 100 ( ( 100 0 ) + ( 100 1 ) + + ( 100 49 ) ) + 50 ( 100 50 ) X = \dbinom{100}{1} + 2\dbinom{100}{2} + \cdots + 100\dbinom{100}{100} = 100\Bigg( \dbinom{100}{0} + \dbinom{100}{1} + \cdots + \dbinom{100}{49}\Bigg) + 50 \dbinom{100}{50}

X = 50 ( 2 ( ( 100 0 ) + ( 100 1 ) + + ( 100 49 ) ) + ( 100 50 ) ) X = 50\Bigg( 2\bigg(\dbinom{100}{0} + \dbinom{100}{1} + \cdots + \dbinom{100}{49}\bigg) + \dbinom{100}{50}\Bigg)

X = 50 2 100 X = 50 \cdot 2^{100}

X = 25 2 101 X = 25 \cdot 2^{101}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...