Combo Monsters

Calculus Level 3

For 1 ω n = k = 1 n cot 2 ( k π 2 n + 1 ) ( k = 0 2 n cot ( x + k π 2 n + 1 ) ) \frac 1{\omega_n} =\prod_{k=1}^{n}\cot^{2}\left(\dfrac{k\pi}{2n+1}\right)\left(\sum_{k=0}^{2n}\cot\left(x+\frac{k\pi}{2n+1}\right)\right)

Find Ω = lim n ( lim x π 4 n + 2 ( tan x tan ( π 4 n + 2 ) ) ω n ) \Omega =\lim_{n\to\infty}\left(\lim_{x\to\frac{\pi}{4n+2}}\left(\dfrac{\tan x}{\tan\left(\frac{\pi}{4n+2}\right)}\right)^{\omega_n}\right) This is the proposal by teachers Marian Ursărescu and Florică Anastase , Romania and published by Romanian Mathematical Magazine .


Submit your answer as 1000 Ω \lfloor 1000 \Omega \rfloor .


The answer is 529.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Naren Bhandari
Dec 3, 2019

Here i wish to share my solution.

Firstly we recall Euler's formula e i m x = ( cos m x + i sin m x ) = ( cos x + i sin x ) m e^{imx} = (\cos mx + i\sin mx)= (\cos x+ i\sin x)^m and further solving gives cos m x + i sin m x sin m x = \frac{\cos mx +i\sin mx}{\sin^m x}= r = 0 m ( m r ) cot m r x i r = r = 0 m 2 + l ( 1 ) r ( m 2 r ) cot m 2 r x + i r = 1 m 2 ( m 2 r 1 ) ( 1 ) r cot m 2 r + 1 x \displaystyle \sum_{r=0}^m { m\choose r} \cot^{m-r}x i^{r}= \displaystyle \sum_{r=0}^{\lceil \frac{m}{2}\rceil+ l }(-1)^{r}{ m\choose 2r} \cot^{m-2r}x+i\sum_{r=1}^{\lceil \frac{m}{2}\rceil}{ m\choose 2r-1}(-1)^{r} \cot^{m-2r+1}x where l = 1 , 0 l=1,0 if m m is even and odd respectively. We note that latter sum is the imaginary part and hence equating we get r = 1 m 2 ( m 2 r 1 ) cot m 2 r + 1 x = sin m x sin m x \sum_{r=1}^{\lceil \frac{m}{2}\rceil}{ m\choose 2r-1} \cot^{m-2r+1}x=\frac{\sin mx}{\sin^{m}x} on setting m = 2 n + 1 , x = k π m m= 2n+1, \; x= \frac{k\pi}{m} and further expansion we get ( 2 n + 1 1 ) cot 2 n k π 2 n + 1 ( 2 n + 1 3 ) cot 2 n 2 k π 2 n + 1 + + ( 2 n + 1 2 n + 1 ) = 0 { 2n+1 \choose 1} \cot^{2n} \frac{k\pi}{2n+1} - { 2n+1 \choose 3} \cot^{2n-2}\frac{k\pi}{2n+1} +\cdots + { 2n+1 \choose 2n+1} =0 as the polynomial equation is of even degree and hence by Vieta's formula we have k = 1 n cot 2 ( k π 2 n + 1 ) = ( 1 ) 2 n ( 2 n + 1 2 n + 1 ) ( 2 n + 1 1 ) = 1 2 n + 1 \prod_{k=1}^{n} \cot^2\left(\frac{k\pi}{2n+1}\right)=(-1)^{2n}\frac{{ 2n+1\choose 2n+1}}{{ 2n+1\choose 1}}=\frac{1}{2n+1} secondly we use the identity k = 0 n 1 sin ( x + k π n ) = sin n x 2 n 1 \displaystyle\prod_{k=0}^{n-1} \sin\left(x+\frac{k\pi}{n}\right) =\frac{\sin nx}{2^{n-1} } , taking log \log on both side and on differentiating with respect to x x , we get that, ie d d x log ( k = 0 n 1 sin ( x + k π n ) ) = d d x log ( sin n x 2 n 1 ) k = 0 n 1 cot ( x + k π n ) = n cot ( n x ) \frac{d}{dx}\log\left(\displaystyle\prod_{k=0}^{n-1} \sin\left(x+\frac{k\pi}{n}\right)\right) =\frac{d}{dx}\log\left(\frac{\sin nx}{2^{n-1}}\right)\\ \Rightarrow \displaystyle \sum_{k=0}^{n-1} \cot\left(x+\frac{k\pi}{n}\right) =n\cot(nx) . Replacing n n by 2 n + 1 2n+1 we yield k = 0 2 n cot ( x + k π 2 n + 1 ) = ( 2 n + 1 ) cot ( ( 2 n + 1 ) x ) \displaystyle \sum_{k=0}^{2n} \cot\left(x+\frac{k\pi}{2n+1}\right) =(2n+1)\cot((2n+1)x) and we deduce that ω n = ( ( 2 n + 1 ) cot ( ( 2 n + 1 ) x ) 2 n + 1 ) 1 = tan ( ( 2 n + 1 ) x ) \omega_n = \left(\frac{(2n+1)\cot ((2n+1)x)}{2n+1}\right)^{-1} = \tan ((2n+1)x) .

Call L ( n ) = lim x π 4 n + 2 ( tan x tan β ) ω n L(n)= \displaystyle\lim_{x\to\frac{\pi}{4n+2}}\left(\frac{\tan x}{\tan \beta} \right)^{\omega_n} . As we can observe that we have 1 1^{\infty} limit form. Since as soon as x 1 4 n + 2 x\to\frac{1}{4n+2} ,function w n w_n\to\infty and tan x tan β 1 \frac{\tan x}{\tan\beta}\to 1 with β = π 4 n + 2 \beta =\frac{\pi}{4n+2} . So we can either make the direct use the formula for 1 1^{\infty} or without of it too. ie

lim x β ( tan x tan β ) ω n = lim x β ( 1 + tan x tan β 1 ) ω n = lim x β ( 1 + 1 tan x tan β 1 ) ω n = exp ( lim x β ( tan x tan β 1 ) tan ( ( 2 n + 1 ) x ) ) = exp ( lim x β ( tan x tan β tan β cot ( ( 2 n + 1 ) x ) ) ) \displaystyle\lim_{x\to\beta}\left(\frac{\tan x}{\tan \beta}\right)^{\omega_n}=\displaystyle\lim_{x\to\beta}\left(1+\frac{\tan x}{\tan \beta}-1\right)^{\omega_n}= \displaystyle\lim_{x\to\beta}\left(1+\frac{1}{\frac{\tan x}{\tan \beta}-1}\right)^{\omega_n} \\= \exp\left(\displaystyle\lim_{x\to\beta }\left(\frac{\tan x}{\tan \beta }-1\right)\tan((2n+1)x)\right)=\exp\left(\displaystyle\lim_{x\to\beta }\left(\frac{\tan x-\tan\beta}{\tan\beta \cot ((2n+1)x)}\right)\right) . Here we have the limit of the form 0 0 \frac{0}{0} so we use L-hopital's rule to get exp ( lim x β sec 2 x ( 2 n + 1 ) csc 2 ( ( 2 n + 1 ) x ) tan β ) = exp ( sec β sin β ( 2 n + 1 ) ) \exp\left(\displaystyle \lim_{x\to\beta}\frac{\sec^2 x}{-(2n+1)\csc^2((2n+1)x)\tan\beta}\right)=\exp\left(\frac{\sec \beta}{-\sin\beta (2n+1)}\right) . And therefore, lim n L ( n ) = exp ( lim n 2 π π ( 4 n + 2 ) tan π 4 n + 2 ) = exp ( 2 π lim n π ( 4 n + 2 ) tan π 4 n + 2 ) = e 2 π = 1 e 2 π \lim_{n\to\infty} L(n)=\exp\left(-\displaystyle \lim_{n\to\infty} \frac{\frac{2\pi}{\pi(4n+2)}}{\tan \frac{\pi}{4n+2}}\right)=\exp\left(-\frac{2}{\pi}\displaystyle \lim_{n\to\infty} \frac{\frac{\pi}{(4n+2)}}{\tan \frac{\pi}{4n+2}}\right) =e^{-\frac{2}{\pi}}=\frac{1}{\sqrt[\pi]{e^{2}}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...