Evaluate the limit x → π − lim ⎝ ⎛ 4 cos 2 2 x 1 − n = 1 ∑ ∞ sinh ( n π ) n cosh ( n x ) ⎠ ⎞ .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
First, note that for n > 0 and 2 h : = π − x , 4 cos 2 2 x = 4 cos 2 ( 2 π − h ) = 4 sin 2 h sinh ( n π ) n cosh ( n x ) = n ⋅ e n π − e − n π e n x + e − n x = n ⋅ 1 − e − 2 n π e n ( π − x ) − 2 n π + e − n ( π − x ) = k = 0 ∑ ∞ n ( e 2 n h − 2 n π + e − 2 n h ) ⋅ e − 2 n k π = k = 0 ∑ ∞ n ( e 2 h − 2 π ( k + 1 ) ) n + n ( e − 2 h − 2 k π ) n Therefore, since all the terms are positive, we can interchange the order of summation to write n = 1 ∑ ∞ sinh ( n π ) n cosh ( n x ) = k = 0 ∑ ∞ n = 1 ∑ ∞ n ( e 2 h − 2 π ( k + 1 ) ) n + n ( e − 2 h − 2 k π ) n = k = 0 ∑ ∞ ( 1 − e 2 h − 2 π ( k + 1 ) ) 2 e 2 h − 2 π ( k + 1 ) + ( 1 − e − 2 h − 2 k π ) 2 e − 2 h − 2 k π = ( 1 − e 2 h ) 2 e 2 h + k = 1 ∑ ∞ ( 1 − e 2 h − 2 k π ) 2 e 2 h − 2 k π + ( 1 − e − 2 h − 2 k π ) 2 e − 2 h − 2 k π = ( e − h − e h ) 2 1 + k = 1 ∑ ∞ ( e − ( h − k π ) − e h − k π ) 2 1 + ( e h + k π − e − ( h + k π ) ) 2 1 = 4 sinh 2 h 1 + 4 1 k = 1 ∑ ∞ sinh 2 ( h − k π ) 1 + sinh 2 ( h + k π ) 1 for 0 < h < π
Now, I can finally consider the limit. In terms of h and using our work above, it becomes 4 1 h → 0 + lim ( sin 2 h 1 − sinh 2 h 1 − k = 1 ∑ ∞ sinh 2 ( h − k π ) 1 − k = 1 ∑ ∞ sinh 2 ( h + k π ) 1 ) Looking at the limit with just the first two terms: h → 0 + lim sin 2 h 1 − sinh 2 h 1 = h → 0 + lim ( sin 2 h ) ( sinh 2 h ) sinh 2 h − sin 2 h = h → 0 + lim ( h + 3 ! 1 h 3 + o ( h 3 ) ) 2 ( h − 3 ! 1 h 3 + o ( h 3 ) ) 2 ( h + 3 ! 1 h 3 + o ( h 3 ) ) 2 − ( h − 3 ! 1 h 3 + o ( h 3 ) ) 2 = h → 0 + lim ( h 2 + 3 1 h 4 + o ( h 4 ) ) ( h 2 − 3 1 h 4 + o ( h 4 ) ) ( h 2 + 3 1 h 4 + o ( h 4 ) ) − ( h 2 − 3 1 h 4 + o ( h 4 ) ) = h → 0 + lim h 4 + o ( h 4 ) 3 2 h 4 + o ( h 4 ) = 3 2 Also, using the monotone convergence theorem (note that sinh 2 ( h − k π ) = sinh 2 ( k π − h ) > sinh 2 ( ( k − 1 ) π ) ), h → 0 + lim k = 1 ∑ ∞ sinh 2 ( h − k π ) 1 = h → 0 + lim k = 1 ∑ ∞ sinh 2 ( h + k π ) 1 = k = 1 ∑ ∞ sinh 2 ( k π ) 1
As a summary so far, we have shown that the limit in the question equals 4 1 ( 3 2 − 2 k = 1 ∑ ∞ sinh 2 ( k π ) 1 ) = 6 1 − 2 1 k = 1 ∑ ∞ sinh 2 ( k π ) 1 and here, I have to be honest, I don't know how to find the exact sum of that last series, but I do know that it converges quickly as for all k ≥ 1 , sinh 2 ( k π ) = 2 1 ( cosh ( 2 k π ) − 1 ) > 4 1 e 2 k π − 8 1 e 2 k π = 8 1 e 2 k π > 0 , so that ∣ ∣ ∣ ∣ ∣ 2 1 k = N + 1 ∑ ∞ sinh 2 ( k π ) 1 ∣ ∣ ∣ ∣ ∣ < k = N + 1 ∑ ∞ 4 e − 2 k π = 1 − e − 2 π 4 e − 2 ( N + 1 ) π = e 2 π − 1 4 e − 2 N π
Therefore the error in 6 1 − 2 1 ( sinh 2 π 1 + sinh 2 ( 2 π ) 1 ) ≈ 0 . 1 6 2 9 1 0 8 1 8 is at most ( 4 e − 4 π ) / ( e 2 π − 1 ) < 2 . 7 × 1 0 − 8 so we know the answer is at least accurate when rounded to 0 . 1 6 2 9 1 0 8