Come On Bois {0}

Calculus Level 5

Evaluate the limit lim x π ( 1 4 cos 2 x 2 n = 1 n cosh ( n x ) sinh ( n π ) ) . \large \lim_{x\to\pi^-} \left(\dfrac1{4\cos^2\frac x2} - \sum_{n=1}^\infty \dfrac{ n \; \text{cosh}(nx)}{\text{sinh}(n\pi) } \right) .


The answer is 0.1629108049.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Brian Moehring
Jul 6, 2018

First, note that for n > 0 n>0 and 2 h : = π x 2h := \pi - x , 4 cos 2 x 2 = 4 cos 2 ( π 2 h ) = 4 sin 2 h 4\cos^2\frac{x}{2} = 4\cos^2\left(\frac{\pi}{2}-h\right) = 4\sin^2h n cosh ( n x ) sinh ( n π ) = n e n x + e n x e n π e n π = n e n ( π x ) 2 n π + e n ( π x ) 1 e 2 n π = k = 0 n ( e 2 n h 2 n π + e 2 n h ) e 2 n k π = k = 0 n ( e 2 h 2 π ( k + 1 ) ) n + n ( e 2 h 2 k π ) n \begin{aligned}\frac{n\cosh(nx)}{\sinh(n\pi)} &= n\cdot \frac{e^{nx} + e^{-nx}}{e^{n\pi}-e^{-n\pi}} \\ &= n\cdot \frac{e^{n(\pi-x)-2n\pi} + e^{-n(\pi-x)}}{1-e^{-2n\pi}} \\ &= \sum_{k=0}^\infty n\left(e^{2nh-2n\pi}+e^{-2nh}\right)\cdot e^{-2nk\pi} \\ &= \sum_{k=0}^\infty n\left(e^{2h-2\pi(k+1)}\right)^n + n\left(e^{-2h-2k\pi}\right)^n\end{aligned} Therefore, since all the terms are positive, we can interchange the order of summation to write n = 1 n cosh ( n x ) sinh ( n π ) = k = 0 n = 1 n ( e 2 h 2 π ( k + 1 ) ) n + n ( e 2 h 2 k π ) n = k = 0 e 2 h 2 π ( k + 1 ) ( 1 e 2 h 2 π ( k + 1 ) ) 2 + e 2 h 2 k π ( 1 e 2 h 2 k π ) 2 for 0 < h < π = e 2 h ( 1 e 2 h ) 2 + k = 1 e 2 h 2 k π ( 1 e 2 h 2 k π ) 2 + e 2 h 2 k π ( 1 e 2 h 2 k π ) 2 = 1 ( e h e h ) 2 + k = 1 1 ( e ( h k π ) e h k π ) 2 + 1 ( e h + k π e ( h + k π ) ) 2 = 1 4 sinh 2 h + 1 4 k = 1 1 sinh 2 ( h k π ) + 1 sinh 2 ( h + k π ) \begin{aligned} \sum_{n=1}^\infty \frac{n\cosh(nx)}{\sinh(n\pi)} &= \sum_{k=0}^\infty \sum_{n=1}^\infty n\left(e^{2h-2\pi(k+1)}\right)^n + n\left(e^{-2h-2k\pi}\right)^n & \\ &= \sum_{k=0}^\infty \frac{e^{2h-2\pi(k+1)}}{\left(1-e^{2h-2\pi(k+1)}\right)^2} + \frac{e^{-2h-2k\pi}}{\left(1-e^{-2h-2k\pi}\right)^2}& \text{for } 0 < h < \pi \\ &= \frac{e^{2h}}{(1 - e^{2h})^2} + \sum_{k=1}^\infty \frac{e^{2h-2k\pi}}{\left(1-e^{2h-2k\pi}\right)^2} + \frac{e^{-2h-2k\pi}}{\left(1-e^{-2h-2k\pi}\right)^2} \\ &= \frac{1}{(e^{-h}-e^{h})^2} + \sum_{k=1}^\infty \frac{1}{\left(e^{-(h-k\pi)}-e^{h-k\pi}\right)^2} + \frac{1}{\left(e^{h+k\pi}-e^{-(h+k\pi)}\right)^2} \\ &= \frac{1}{4\sinh^2h} + \frac{1}{4} \sum_{k=1}^\infty \frac{1}{\sinh^2(h-k\pi)} + \frac{1}{\sinh^2(h+k\pi)} \end{aligned}

Now, I can finally consider the limit. In terms of h h and using our work above, it becomes 1 4 lim h 0 + ( 1 sin 2 h 1 sinh 2 h k = 1 1 sinh 2 ( h k π ) k = 1 1 sinh 2 ( h + k π ) ) \frac{1}{4}\lim_{h\to 0^+}\left(\frac{1}{\sin^2h} - \frac{1}{\sinh^2h} - \sum_{k=1}^\infty \frac{1}{\sinh^2(h-k\pi)} - \sum_{k=1}^\infty \frac{1}{\sinh^2(h+k\pi)}\right) Looking at the limit with just the first two terms: lim h 0 + 1 sin 2 h 1 sinh 2 h = lim h 0 + sinh 2 h sin 2 h ( sin 2 h ) ( sinh 2 h ) = lim h 0 + ( h + 1 3 ! h 3 + o ( h 3 ) ) 2 ( h 1 3 ! h 3 + o ( h 3 ) ) 2 ( h + 1 3 ! h 3 + o ( h 3 ) ) 2 ( h 1 3 ! h 3 + o ( h 3 ) ) 2 = lim h 0 + ( h 2 + 1 3 h 4 + o ( h 4 ) ) ( h 2 1 3 h 4 + o ( h 4 ) ) ( h 2 + 1 3 h 4 + o ( h 4 ) ) ( h 2 1 3 h 4 + o ( h 4 ) ) = lim h 0 + 2 3 h 4 + o ( h 4 ) h 4 + o ( h 4 ) = 2 3 \begin{aligned} \lim_{h\to 0^+} \frac{1}{\sin^2h} - \frac{1}{\sinh^2h} &= \lim_{h\to 0^+} \frac{\sinh^2h - \sin^2h}{\left(\sin^2h\right)\left(\sinh^2h\right)} \\ &= \lim_{h\to 0^+} \frac{\left(h+\frac{1}{3!}h^3 + o(h^3)\right)^2 - \left(h - \frac{1}{3!}h^3 + o(h^3)\right)^2}{\left(h+\frac{1}{3!}h^3 + o(h^3)\right)^2\left(h - \frac{1}{3!}h^3 + o(h^3)\right)^2} \\ &= \lim_{h\to 0^+} \frac{\left(h^2 + \frac{1}{3}h^4 + o(h^4)\right)-\left(h^2 - \frac{1}{3}h^4 + o(h^4)\right)}{\left(h^2 + \frac{1}{3}h^4 + o(h^4)\right)\left(h^2 - \frac{1}{3}h^4 + o(h^4)\right)} \\ &= \lim_{h\to 0^+} \frac{\frac{2}{3}h^4 + o(h^4)}{h^4 + o(h^4)} \\ &= \frac{2}{3} \end{aligned} Also, using the monotone convergence theorem (note that sinh 2 ( h k π ) = sinh 2 ( k π h ) > sinh 2 ( ( k 1 ) π ) \sinh^2(h-k\pi) = \sinh^2(k\pi-h) > \sinh^2((k-1)\pi) ), lim h 0 + k = 1 1 sinh 2 ( h k π ) = lim h 0 + k = 1 1 sinh 2 ( h + k π ) = k = 1 1 sinh 2 ( k π ) \lim_{h\to 0^+} \sum_{k=1}^\infty \frac{1}{\sinh^2(h-k\pi)} = \lim_{h\to 0^+} \sum_{k=1}^\infty \frac{1}{\sinh^2(h+k\pi)} = \sum_{k=1}^\infty \frac{1}{\sinh^2(k\pi)}


As a summary so far, we have shown that the limit in the question equals 1 4 ( 2 3 2 k = 1 1 sinh 2 ( k π ) ) = 1 6 1 2 k = 1 1 sinh 2 ( k π ) \frac{1}{4}\left(\frac{2}{3} - 2\sum_{k=1}^\infty \frac{1}{\sinh^2(k\pi)}\right) = \frac{1}{6} - \frac{1}{2}\sum_{k=1}^\infty \frac{1}{\sinh^2(k\pi)} and here, I have to be honest, I don't know how to find the exact sum of that last series, but I do know that it converges quickly as for all k 1 k\geq 1 , sinh 2 ( k π ) = 1 2 ( cosh ( 2 k π ) 1 ) > 1 4 e 2 k π 1 8 e 2 k π = 1 8 e 2 k π > 0 , \sinh^2(k\pi) = \frac{1}{2}\left(\cosh(2k\pi) - 1\right) > \frac{1}{4}e^{2k\pi} - \frac{1}{8}e^{2k\pi} = \frac{1}{8}e^{2k\pi} > 0, so that 1 2 k = N + 1 1 sinh 2 ( k π ) < k = N + 1 4 e 2 k π = 4 e 2 ( N + 1 ) π 1 e 2 π = 4 e 2 N π e 2 π 1 \left|\frac{1}{2}\sum_{k=N+1}^\infty \frac{1}{\sinh^2(k\pi)}\right| < \sum_{k=N+1}^\infty 4e^{-2k\pi} = \frac{4e^{-2(N+1)\pi}}{1-e^{-2\pi}} = \frac{4e^{-2N\pi}}{e^{2\pi}-1}

Therefore the error in 1 6 1 2 ( 1 sinh 2 π + 1 sinh 2 ( 2 π ) ) 0.162910818 \frac{1}{6} - \frac{1}{2}\left(\frac{1}{\sinh^2\pi} + \frac{1}{\sinh^2(2\pi)}\right) \approx 0.162910818 is at most ( 4 e 4 π ) / ( e 2 π 1 ) < 2.7 × 1 0 8 \left(4e^{-4\pi}\right)/\left(e^{2\pi}-1\right) < 2.7 \times 10^{-8} so we know the answer is at least accurate when rounded to 0.1629108 \boxed{0.1629108}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...