Coming back home after a few strikes

From one corner A of a fixed regular billiards table ABCD placed on a horizontal surface. A ball of mass m=2kg and negligible dimensions is projected in the horizontal plane. The coefficient of restitution is 0.5 for every collision. It strikes the sides in order BC , AD , DC ,BC , and then returns to the same point A then the angle of initial projection it makes with side AB is θ \theta

If the ratio of sides AB:BC is 5:1, find 100 t a n θ \lfloor 100tan\theta \rfloor .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Milun Moghe
Mar 20, 2014

Image Image t 1 = a u c o s θ = B P 1 u s i n θ t_{1}=\frac{a}{ucos\theta}=\frac{BP_{1}}{usin\theta} ... A P 1 A\rightarrow P_{1}

t 2 = a e u c o s θ = K P 2 u s i n θ t_{2}=\frac{a}{eucos\theta}=\frac{KP_{2}}{usin\theta} .... P 1 P 2 P_{1}\rightarrow P_{2} .....K is the mid point of A P 2 AP_{2}

t 3 = D P 3 e 2 u c o s θ = P 2 D u s i n θ t_{3}=\frac{DP_{3}}{e^{2}ucos\theta}=\frac{P_{2}D}{usin\theta} ..... P 2 P 3 P_{2}\rightarrow P_{3}

t 4 = P 3 C e 2 u c o s θ = C P 4 e u s i n θ t_{4}=\frac{P_{3}C}{e^{2}ucos\theta}=\frac{CP_{4}}{eusin\theta} ..... P 3 P 4 P_{3}\rightarrow P_{4}

t 5 = a e 3 u c o s θ = P 4 B e u s i n θ t_{5}=\frac{a}{e^{3}ucos\theta}=\frac{P_{4}B}{eusin\theta} .... P 4 A P_{4}\rightarrow A

a u c o s θ + a e u c o s θ + D P 3 e 2 u c o s θ + P 3 C e 2 u c o s θ + a e 3 u c o s θ = B P 1 u s i n θ + K P 2 u s i n θ + P 2 D u s i n θ + C P 4 e u s i n θ + P 4 B e u s i n θ \frac{a}{ucos\theta}+\frac{a}{eucos\theta}+\frac{DP_{3}}{e^{2}ucos\theta}+\frac{P_{3}C}{e^{2}ucos\theta}+\frac{a}{e^{3}ucos\theta}=\frac{BP_{1}}{usin\theta}+\frac{KP_{2}}{usin\theta}+\frac{P_{2}D}{usin\theta}+\frac{CP_{4}}{eusin\theta}+\frac{P_{4}B}{eusin\theta}

a c o s θ ( 1 + 1 e + 1 e 2 + 1 e 3 ) = b s i n θ ( 1 + 1 e ) \frac{a}{cos\theta}(1+\frac{1}{e}+\frac{1}{e^{2}}+\frac{1}{e^{3}})=\frac{b}{sin\theta}(1+\frac{1}{e})

e = a s i n θ b c o s θ a s i n θ e=\sqrt{\frac{asin\theta}{bcos\theta-asin\theta}}

Nice work Milun,

Although I think that you have an extra = sign in the penultimate line also K isn't the midpoint of A P 2 AP_2 .

The last lines should read a c o s θ ( 1 + 1 e + 1 e 2 + 1 e 3 ) = b s i n θ ( 1 + 1 e ) \frac{a}{cos \theta} (1+\frac{1}{e} + \frac{1}{e^2} + \frac{1}{e^3} )= \frac{b}{sin \theta}(1+ \frac{1}{e})

We are given e = 0.5 e=0.5 and a / b = 5 a/b =5 in the question. Substituting in these values gives 5 t a n θ × ( 1 + 2 + 4 + 8 ) = ( 1 + 2 ) 5tan \theta \times( 1+ 2+ 4+8)=(1+2) 25 t a n θ = 1 25tan\theta = 1 Or 100 t a n θ = 4 100tan \theta = 4

sirio quintavalle - 7 years, 2 months ago

Log in to reply

Well k is the midpoint of AP2 I've just not shown it in the diagram. BTW thanks for pointing out the typos

Milun Moghe - 7 years, 2 months ago

What a lengthy question! Well, It felt awesome, when answer matched!

Md Zuhair - 3 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...