Common area of two ellipses

Calculus Level 5

Two ellipses have the equations

7 x 2 + 8 x y + 13 y 2 36 x 42 y 43 = 0 7 x^2 + 8 xy + 13 y^2 - 36 x - 42 y - 43 = 0

(drawn in blue), and

33 x 2 28 x y + 12 y 2 104 x + 32 y 137 = 0 33 x^2 - 28 xy + 12 y^2 - 104 x + 32 y - 137 = 0

(drawn in orange). Find the area of the region that is common to both ellipses (shaded in light green). If this area is A A , then enter 1000 A \lfloor 1000 A \rfloor as your answer.

Inspiration


The answer is 22905.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

David Vreken
Mar 29, 2019

Solving the two ellipse equations, the points of intersection are P ( 1 , 4 ) P(1, 4) , Q ( 5 , 2 ) Q(5, 2) , R ( 3 , 2 ) R(3, -2) , and S ( 1 , 0 ) S(-1, 0) .

Using the distance formula, the sides of quadrilateral P Q R S PQRS are P Q = Q R = R S = P R = 20 PQ = QR = RS = PR = \sqrt{20} and the diagonals are P R = Q S = 40 PR = QS = \sqrt{40} , therefore P Q R S PQRS is a square with an area of A P Q R S = 20 A_{PQRS} = 20 .

The equation of the line with P Q PQ is y = 1 2 x + 9 2 y = -\frac{1}{2}x + \frac{9}{2} and the equation of the line with P R PR is y = 2 x + 2 y = 2x + 2 .

The equation of the upper part of the blue ellipse rearranges to y = 1 13 ( 5 3 x 2 + 12 x + 40 4 x + 21 ) y = \frac{1}{13}(5\sqrt{-3x^2 + 12x + 40} - 4x + 21) , and the equation of the upper part of the orange ellipse rearranges to y = 1 6 ( 5 2 x 2 + 8 x + 19 + 7 x 8 ) y = \frac{1}{6}(5\sqrt{-2x^2 + 8x + 19} + 7x - 8) .

The area of the section between the blue ellipse and P Q PQ is then A P Q = 1 5 ( ( 1 13 ( 5 3 x 2 + 12 x + 40 4 x + 21 ) ) ( 1 2 x + 9 2 ) ) d x A_{PQ} = \int_{1}^{5} ((\frac{1}{13}(5\sqrt{-3x^2 + 12x + 40} - 4x + 21)) - (-\frac{1}{2}x + \frac{9}{2})) dx , and the area of the section between the orange ellipse and P R PR is A P R = 1 1 ( ( 1 6 ( 5 2 x 2 + 8 x + 19 + 7 x 8 ) ) ( 2 x + 2 ) ) d x A_{PR} = \int_{-1}^{1} ((\frac{1}{6}(5\sqrt{-2x^2 + 8x + 19} + 7x - 8)) - (2x + 2)) dx .

By symmetry, A R S = A P Q A_{RS} = A_{PQ} and A Q R = A P R A_{QR} = A_{PR} , so the total shaded area is A = 2 A P Q + 2 A P R + A P Q R S 22.9055 A = 2A_{PQ} + 2A_{PR} + A_{PQRS} \approx 22.9055 , which makes 1000 A = 22905 \lfloor 1000A \rfloor = \boxed{22905} .

Gabriel Chacón
Mar 29, 2019

I will take advantage of the graph provided to get a much simpler solution.

Rotate the ellipses with respect to their center ( 2 , 1 ) (2,1) so that the coordinates of the intersection points are ( ± 5 , ± 5 ) (\pm \sqrt{5}, \pm \sqrt{5}) . In these rotated axes centered at ( 2 , 1 ) (2,1) the ellipses have equations of the form x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 where the major semi-axis a a of each one is read from the graph and b b can be calculated substituting one of the intersection points. After little manipulation, the ellipses become:

  • Blue ellipse: x 2 + 3 y 2 = 20 x^2+3y^2=20 , with major semi-axis a = 2 5 a=2\sqrt{5}
  • Orange ellipse: y 2 + 8 x 2 = 45 y^2+8x^2=45 , with major semi-axis a = 3 5 a=3\sqrt{5}

The square has an area of 20 20 . We just need to calculate the extra area limited by the sides of the square and the four arches.

We get integrals of the form x 0 x 0 a 2 x 2 d x \displaystyle \int_{-x_0}^{x_0}\sqrt{a^2-x^2}\, dx which are quite straightforward to solve using the variable change x = a sin θ , d x = a cos θ d θ x=a\sin\theta, dx=a\cos\theta \, d\theta :

x 0 x 0 a 2 x 2 d x = 2 × 0 arcsin ( x 0 a ) cos 2 θ d θ = 2 × 0 arcsin ( x 0 a ) cos 2 θ d θ = 2 × 0 arcsin ( x 0 a ) 1 2 + 1 2 cos 2 θ d θ = [ θ + 1 2 sin 2 θ ] 0 arcsin ( x 0 a ) \displaystyle \int_{-x_0}^{x_0}\sqrt{a^2-x^2}\, dx=2 \times \displaystyle \int_{0}^{\arcsin\left(\frac{x_0}{a}\right)}\cos^2\theta \, d\theta=2 \times \displaystyle \int_{0}^{\arcsin\left(\frac{x_0}{a}\right)}\cos^2\theta \, d\theta=2 \times \displaystyle \int_{0}^{\arcsin\left(\frac{x_0}{a}\right)}\dfrac{1}{2}+\dfrac{1}{2}\cos2\theta \, d\theta=\left[ \theta+\dfrac{1}{2}\sin2\theta \right]_0^{\arcsin\left(\frac{x_0}{a}\right)}

Using x 0 = 5 x_0=\sqrt{5} and the values of a a for each ellipse we obtain:

  • A b l u e [ θ + 1 2 sin 2 θ ] 0 arcsin ( 5 2 5 ) 1.045998 A_{blue}\left[ \theta+\dfrac{1}{2}\sin2\theta \right]_0^{\arcsin\left(\frac{\sqrt{5}}{2\sqrt{5}}\right)}\approx 1.045998
  • A o r a n g e [ θ + 1 2 sin 2 θ ] 0 arcsin ( 5 3 5 ) 0.406772 A_{orange}\left[ \theta+\dfrac{1}{2}\sin2\theta \right]_0^{\arcsin\left(\frac{\sqrt{5}}{3\sqrt{5}}\right)}\approx 0.406772

The total area is A = A s q u a r e + 2 × A b l u e + 2 × A o r a n g e 22.905540 1000 A = 22905 A=A_{square}+2 \times A_{blue}+2 \times A_{orange}\approx 22.905540 \implies \boxed{\lfloor 1000A \rfloor=22905}

Frank Petiprin
Apr 18, 2019

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import pprint
import random
import numpy as np
import sympy
from sympy import *
from sympy.solvers import solve
from sympy import Symbol
#Use an IPad Pro, Python and Monte Carlo Integration to determine the Green Area
#Define a 6 by 6 rectangle around the target area and toss random pairs (x,y).
#Calculate the ratio of hits(in target area) to total number of tosses times area of rectangle.
#i.e.  (hits/tosses)*areaBlackBox
x,y=symbols('x y')
seed=9006
#random.seed(seed)
blue,red=7*x**2+8*x*y+13*y**2-36*x-42*y-43,33*x**2-28*x*y+12*y**2-104*x+32*y-137
twored,twoblue=solve(red,y),(solve(blue,y))
# Create 4 Functions From Their Symbolic Representation
blueL,blueU=sympy.lambdify((x),twoblue[0],"numpy"),sympy.lambdify((x),twoblue[1],"numpy")
redL,redU=sympy.lambdify((x),twored[0],"numpy"),sympy.lambdify((x),twored[1],"numpy")
end= 20000000 #number of tosses
TotAreaM=0 
end1=5 #number of experiments
for i in range(1,end1+1):
    countAtot=0
    for j in range(1,end+1):
#Size of targeted Box 6*6
        x,y=random.uniform(-1,5),random.uniform(-2,4)
        trueA1=((blueL(x)<=y and y<=redU(x)) and (-1<=x and x<=1))
        trueA2=((blueL(x)<=y and y<=blueU(x)) and (1<x and x<=3))
        trueA3=((redL(x)<=y and y<=blueU(x)) and (3<x and x<=5))
        if(trueA1 or trueA2 or trueA3):
            countAtot+=1
    Area=(countAtot/end)*36
    print('Number Of Random (x,y) Pairs', end,'i=',i)
    AreaMod=floor(1000*Area)
    print('Answer =',AreaMod)
    TotAreaM+=AreaMod
#   input()
Avg=float(TotAreaM/end1)
print('++++++++++++++++++++++++++++')
print('Average Modified Area ',Avg)
#Sample Run
Number Of Random (x,y) Pairs 20000000 i= 1
Answer = 22900
Number Of Random (x,y) Pairs 20000000 i= 2
Answer = 22904
Number Of Random (x,y) Pairs 20000000 i= 3
Answer = 22899
Number Of Random (x,y) Pairs 20000000 i= 4
Answer = 22903
Number Of Random (x,y) Pairs 20000000 i= 5
Answer = 22916
++++++++++++++++++++++++++++++++++
Average  Modified Area 22904.4

Hosam Hajjir
Mar 28, 2019

The given equation of the first ellipse can be written using matrices as

r T A r + b T r + c = 0 ( 1 ) r^T A r + b^T r + c = 0 \hspace{24pt} (1)

where

r = [ x y ] T r = \begin{bmatrix} x && y \end{bmatrix}^T

A = [ 7 4 4 13 ] A = \begin{bmatrix} 7 && 4 \\ 4 && 13 \end{bmatrix}

b T = [ 36 42 ] b^T =\begin{bmatrix} -36 && -42 \end{bmatrix}

c = 43 c = -43

The first step is to find the center of this ellipse. It is given by

r 0 = 1 2 A 1 b ( 2 ) r_0 = -\frac{1}{2} A^{-1} b \hspace{24pt} (2)

One can verify that equation (1) be re-written as,

( r r 0 ) T A ( r r 0 ) = c + r 0 T A r 0 ( 3 ) ( r - r_0 )^T A (r - r_0) = - c + r_0^T A r_0 \hspace{24pt} (3)

Define the matrix Q Q as follows

Q = A c + r 0 T A r 0 ( 4 ) Q = \dfrac{ A }{- c + r_0^T A r_0} \hspace{24pt} (4)

then, from equation (3) and (4), we obtain

( r r 0 ) T Q ( r r 0 ) = 1 ( 5 ) (r - r_0)^T Q (r - r_0) = 1 \hspace{24pt} (5)

The next step is to diagonalize Q Q , and write it as Q = R D R T Q = R D R^T

The procedure is as follows,

Let θ = 1 2 tan 1 2 Q 12 Q 11 Q 22 ( 6 ) \hspace{6pt} \theta = \dfrac{1}{2} \tan^{-1} \dfrac{ 2 Q_{12} }{Q_{11}-Q_{22}} \hspace{24pt} (6)

Then

R = [ cos θ sin θ sin θ cos θ ] ( 7 ) R = \begin{bmatrix} \cos \theta && -\sin \theta \\ \sin \theta && \cos \theta \end{bmatrix} \hspace{24pt} (7)

and

D = diag { d 11 , d 22 } ( 8.1 ) D = \text{diag} \{ d_{11} , d_{22} \} \hspace{24pt} (8.1)

with

d 11 = Q 11 cos 2 θ + Q 22 sin 2 θ + 2 Q 12 cos θ sin θ ( 8.2 ) d_{11} = Q_{11} \cos^2 \theta + Q_{22} \sin^2 \theta + 2 Q_{12} \cos \theta \sin \theta \hspace{24pt} (8.2)

d 22 = Q 11 sin 2 θ + Q 22 cos 2 θ 2 Q 12 cos θ sin θ ( 8.3 ) d_{22} = Q_{11} \sin^2 \theta + Q_{22} \cos^2 \theta - 2 Q_{12} \cos \theta \sin \theta \hspace{24pt} (8.3)

Replacing matrix Q Q in equation (5) by its diagonalized form, we obtain

( r r 0 ) T R D R T ( r r 0 ) = 1 ( 9 ) (r - r_0)^T R D R^T (r - r_0) = 1 \hspace{24pt} (9)

For an ellipse, the diagonal matrix D D has positive entries, and therefore can be factored as D = D 1 2 D 1 2 D = D^{\frac{1}{2}} D^{\frac{1}{2}}

Using this factorization, and defining the vector

u = D 1 2 R T ( r r 0 ) ( 10 ) u = D^{\frac{1}{2}} R^T (r - r_0) \hspace{24pt} (10)

then it follows that u T u = 1 u^T u = 1 , thus vector u u is a unit vector, and can therefore be parameterized as u = [ cos t , sin t ] T u = [\cos t , \sin t]^T .

Solving for r r in terms of u u gives,

r = r 0 + R D 1 2 u = r 0 + V u ( 11 ) r = r_0 + R D^{-\frac{1}{2}} u = r_0 + V u \hspace{24pt} (11)

The columns of matrix V V are vectors extending along the major and minor axes directions and having lengths of the semi-major

and semi-minor axes.

The same procedure can be applied to the second ellipse, and we'll end up with the following parametric equations for

the two ellipses,

r 1 ( t ) = r C 1 + V 1 u 1 ( t ) ( 12.1 ) r_1(t) = r_{C1} + V_1 u_1(t) \hspace{24pt} (12.1)

r 2 ( s ) = r C 2 + V 2 u 2 ( s ) ( 12.2 ) r_2(s) = r_{C2} + V_2 u_2(s)\hspace{24pt} (12.2)

Performing the calculations detailed above, the reader can verify that,

r C 1 = r C 2 = [ 2 1 ] T r_{C1} = r_{C2} = \begin{bmatrix} 2 && 1 \end{bmatrix}^T

V 1 = [ 4 2 3 2 4 3 ] V_1 = \begin{bmatrix} 4 && \dfrac{2}{\sqrt{3}} \\ -2 && \dfrac{4}{\sqrt{3}} \end{bmatrix}

V 2 = [ 3 2 3 3 2 2 6 ] V_2 = \begin{bmatrix} \dfrac{3}{\sqrt{2}} && 3 \\-\dfrac{3}{2\sqrt{2}} && 6 \end{bmatrix}

We next have to find the points of intersection of the two ellipses, so we set up the equation,

r 1 ( t ) = r 2 ( s ) r C 1 + V 1 u 1 ( t ) = r C 2 + V 2 u 2 ( s ) ( 13 ) r_1(t) = r_2(s) \Longrightarrow r_{C1} + V_1 u_1(t) = r_{C2} + V_2 u_2(s) \hspace{24pt} (13)

Solving for u 1 ( t ) u_1(t) , we obtain,

u 1 ( t ) = V 1 1 ( r C 2 r C 1 + V 2 u 2 ( s ) ) = e + F u 2 ( s ) ( 14 ) u_1(t) = V_1^{-1} ( r_{C2} - r_{C1} + V_2 u_2(s) ) = e + F u_2(s) \hspace{24pt} (14)

where e = V 1 1 ( r C 2 r C 1 ) e = V_1^{-1} (r_{C2} - r_{C1}) and F = V 1 1 V 2 F = V_1^{-1} V_2

Since u 1 u_1 is a unit vector, we have u 1 T u 1 = 1 u_1^T u_1 = 1 , and this leads to,

( e + F u 2 ) T ( e + F u 2 ) = 1 ( 15 ) (e + F u_2 )^T (e + F u_2 ) = 1 \hspace{24pt} (15)

Expanding the left hand side of (15),

u 2 T F T F u 2 + 2 u 2 T F T e + e T e = 1 ( 16 ) u_2^T F^T F u_2 + 2 u_2^T F^T e + e^T e = 1 \hspace{24pt} (16)

For reference, let's define G = F T F , h = 2 F T e , q = e T e 1 G = F^T F , h = 2 F^T e, q = e^T e - 1 , then equation (16) can be written as,

u 2 T G u 2 + u 2 T h + q = 0 ( 17 ) u_2^T G u_2 + u_2^T h + q = 0 \hspace{24pt} (17)

Recall that u 2 = [ cos s , sin s ] T u_2 = [ \cos s, \sin s ]^T , thus expanding equation (17) yields,

G 11 cos 2 s + G 22 sin 2 s + 2 G 12 sin s cos s + h 1 cos s + h 2 sin s + q = 0 ( 18 ) G_{11} \cos^2 s + G_{22} \sin^2 s + 2 G_{12} \sin s \cos s + h_1 \cos s + h_2 \sin s + q = 0 \hspace{24pt} (18)

Using the identities cos 2 s = 1 2 ( 1 + cos ( 2 s ) ) \cos^2 s = \frac{1}{2} (1 + \cos(2s) ) , and sin 2 s = 1 2 ( 1 cos ( 2 s ) ) \sin^2 s = \frac{1}{2} (1 - \cos(2s) ) as well as 2 sin s cos s = sin ( 2 s ) 2 \sin s \cos s = \sin(2s) , equation (18) becomes,

c 1 cos s + c 2 sin s + c 3 cos 2 s + c 4 sin 2 s + c 5 = 0 ( 19 ) c_1 \cos s + c_2 \sin s + c_3 \cos 2 s + c_4 \sin 2 s + c_5 = 0\hspace{24pt} (19)

where c 1 = h 1 , c 2 = h 2 , c 3 = 1 2 ( G 11 G 22 ) , c 4 = G 12 , c 5 = q + 1 2 ( G 11 + G 22 ) c_1 = h_1, c_2 = h_2 , c_3 = \frac{1}{2} ( G_{11} - G_{22} ) , c_4 = G_{12} , c_5 = q + \frac{1}{2} (G_{11}+G_{22})

After performing all the calculations above, equation (19) produces four solutions, and they are,

s 1 = 0.339836909 s 2 = 2.801755744 s 3 = 3.481429563 s 4 = 5.943348398 s_1 = 0.339836909 \hspace{12pt}s_2=2.801755744\hspace{12pt} s_3=3.481429563\hspace{12pt} s_4=5.943348398

The corresponding values for parameter t t of the first ellipse are,

t 1 = 1.047197551 t 2 = 2.094395102 t 3 = 4.188790205 t 4 = 5.235987756 t_1=1.047197551 \hspace{12pt}t_2=2.094395102\hspace{12pt}t_3=4.188790205\hspace{12pt}t_4=5.235987756

The four solution for s s (and also the four corresponding solutions of t t ) correspond in turn to the Cartesian points:

P 1 = ( 5 , 2 ) , P 2 = ( 1 , 4 ) , P 3 = ( 1 , 0 ) , P 4 = ( 3 , 2 ) P_1 = (5, 2) ,\hspace{12pt} P_2 = (1, 4),\hspace{12pt} P_3 = (-1, 0),\hspace{12pt} P_4 = (3, -2)

The region common to both ellipses is bounded by the first ellipse for t [ t 1 , t 2 ] t \in [t_1 , t_2] and for t [ t 3 , t 4 ] t \in [t_3, t_4] and is bounded by the second ellipse for s [ s 2 , s 3 ] s \in [s_2, s_3] and for s [ s 4 , s 1 + 2 π ] s \in [s_4, s_1 + 2\pi ]

The area enclosed by the parametric curve r ( t ) = ( x ( t ) , y ( t ) ) r(t) = (x(t), y(t) ) whose t t -derivative is r ( t ) = ( x ( t ) , y ( t ) ) r'(t) = (x'(t), y'(t) ) is given by the formula

Area = 1 2 t i t f x ( t ) y ( t ) x ( t ) y ( t ) d t ( 20 ) \text{Area} = \dfrac{1}{2} \left| \displaystyle \int_{t_i}^{t_f} x(t) y'(t) - x'(t) y(t) dt \right| \hspace{24pt}(20)

If we extend the vector r ( t ) r(t) and its t t -derivative into three dimensions, by padding our r ( t ) r(t) and r ( t ) r'(t) with a zero z z coordinate, then the above integral can be written conveniently using cross product notation as,

Area = 1 2 t i t f ( r ( t ) × r ( t ) ) z d t ( 21 ) \text{Area} = \dfrac{1}{2} \left| \displaystyle \int_{t_i}^{t_f} \left( r(t) \times r'(t) \right)_z dt \right| \hspace{24pt}(21)

where ( ) z \left( \cdot \right)_z is the z z coordinate of its vector argument. We have to use this formula four times corresponding to the four intervals that we have. Now let's see what this evaluation entails. We have

r ( t ) = r C + V u r(t) = r_{C} + V u

If V = [ v 1 v 2 ] V = [ v_1 \hspace{6pt} v_2 ] , where v 1 v_1 and v 2 v_2 are the columns of V V , then we have,

r ( t ) = r C + v 1 cos t + v 2 sin t r(t) = r_{C} + v_1 \cos t + v_2 \sin t

and its t t -derivative is,

r ( t ) = v 1 sin t + v 2 cos t r'(t) = - v_1 \sin t + v_2 \cos t

Hence,

r ( t ) × r ( t ) = ( r C × v 1 ) sin t + ( r C × v 2 ) cos t + ( v 1 × v 2 ) ( cos 2 t + sin 2 t ) r(t) \times r'(t) = - (r_{C} \times v_1) \sin t + (r_{C} \times v_2) \cos t + ( v_1 \times v_2 ) ( \cos^2 t + \sin^2 t)

which simplifies to,

r ( t ) × r ( t ) = ( r C × v 1 ) sin t + ( r C × v 2 ) cos t + v 1 × v 2 r(t) \times r'(t)=- (r_{C} \times v_1) \sin t + (r_{C} \times v_2) \cos t + v_1 \times v_2

Evaluating the area integral over a given interval [ t i , t f ] [t_i , t_f ] yields,

A k = 1 2 ( ( r C × v 1 ) z ( cos t f cos t i ) + ( r C × v 2 ) z ( sin t f sin t i ) + ( v 1 × v 2 ) z ( t f t i ) ) k = 1 , 2 , 3 , 4 A_k = \dfrac{1}{2} \left( (r_{C} \times v_1)_z (\cos t_f - \cos t_i) + (r_{C} \times v_2)_z (\sin t_f - \sin t_i) + ( v_1 \times v_2 )_z (t_f - t_i) \right) \hspace{10pt} k = 1, 2, 3, 4

In this particular problem, and since r C 1 = r C 2 r_{C1} = r_{C2} we can shift the center of our parametric curves to the origin, and this simplifies the above formula into

A k = 1 2 ( v 1 × v 2 ) z ( t f t i ) k = 1 , 2 , 3 , 4 A_k =\dfrac{1}{2} (v_1 \times v_2 )_z (t_f - t_i ) \hspace{24pt} k = 1, 2, 3, 4

From matrix V 1 V_1 and V 2 V_2 above, we have, for the first ellipse, ( v 1 × v 2 ) z = 20 3 ( v_1 \times v_2 )_z = \dfrac{20}{\sqrt{3}} , and for the second ellipse, ( v 1 × v 2 ) z = 45 2 2 (v_1 \times v_2)_z = \dfrac{45}{2\sqrt{2}}

Plugging in the t t and s s values we found, the area is given by,

Area = 1 2 ( 20 3 ( t 2 t 1 + t 4 t 3 ) + 45 2 2 ( s 3 s 2 + s 1 + 2 π s 4 ) ) \text{Area} = \dfrac{1}{2} \left( \dfrac{20}{\sqrt{3}} ( t_2 - t_1 + t_4 - t_3 ) + \dfrac{45}{2\sqrt{2}} ( s_3 - s_2 + s_1 + 2 \pi - s_4 )\right)

This evaluates to, Area = A = 22.9055400043 \text{Area} = A = 22.9055400043 , and this makes the answer 1000 A = 22905 \lfloor 1000A \rfloor = \boxed{22905} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...