Common Matrix Factor

Algebra Level 4

A B = B A AB = BA'

Let A = [ 3 0 0 2 ] A = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} , A = [ 18 12 20 13 ] A' = \begin{bmatrix} 18 & 12 \\ -20 & -13 \end{bmatrix} , and B = [ a b c d ] B = \begin{bmatrix} a & b \\ c & d \end{bmatrix} , where a , b , c , d a, b, c, d are positive integers, satisfying the equation above.

If det ( B ) = 1 \det(B) = 1 , compute a + b + c + d a+b+c+d .


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Jan 29, 2017

A B = [ 3 a 3 b 2 c 2 d ] AB = \begin{bmatrix} 3a & 3b \\ 2c & 2d\end{bmatrix}

B A = [ 18 a 20 b 12 a 13 b 18 c 20 d 12 c 13 d ] BA' = \begin{bmatrix} 18a-20b & 12a-13b \\ 18c-20d & 12c-13d \end{bmatrix}

Since A B = B A AB=BA' , equating corresponding entries:

{ 18 a 20 b = 3 a 3 a = 4 b 12 a 13 b = 3 b 3 a = 4 b 18 c 20 d = 2 c 4 c = 5 d 12 c 13 d = 2 d 4 c = 5 d \implies \begin{cases} 18a-20b=3a\implies 3a=4b\\12a-13b=3b\implies 3a=4b\\18c-20d=2c\implies 4c=5d\\12c-13d=2d\implies 4c=5d\end{cases}

{ a = 4 b 3 . . . . ( 1 ) d = 4 c 5 . . . . ( 2 ) \implies \begin{cases}a=\frac{4b}3....(1)\\d=\frac{4c}5....(2)\end{cases}

Since det ( B ) = 1 (B)=1 a d b c = 1 \implies ad-bc=1 and using ( 1 ) , ( 2 ) (1),(2) by multiplying them and substituting we get:

16 b c 15 b c = 1 \frac{16bc}{15}-bc=1 b c = 15 = 3 5 = 15 1 \implies bc=15=3\cdot 5=15\cdot 1

And since from 1 1 and 2 2 we know 4 b m o d 3 = 0 4b\mod 3=0 and 4 c m o d 5 = 0 4c\mod 5=0 :

b = 3 , c = 5 a = 4 b 3 = 4 , d = 4 c 5 = 4 \implies b=3,c=5\implies a=\frac{4b}3=4,d=\frac{4c}5=4

a + b + c + d = 16 \therefore a+b+c+d=\boxed{16}

Same way I did then. :)

Worranat Pakornrat - 4 years, 4 months ago

Log in to reply

Nice problem... I enjoyed solving it... Keep posting ... :-)

Rishabh Jain - 4 years, 4 months ago

Log in to reply

Thanks. Will do. :)

Worranat Pakornrat - 4 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...