Common Tangent

Calculus Level pending

The equation of the common tangent to the curves y 2 = 8 x { y }^{ 2 }=8x and x y = 1 xy=-1 is of the form a y + b x + c = 0 ay+bx+c=0 , Then find the value of a b + c a-b+c


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Akhilesh Prasad
Apr 13, 2016

The given equations are:- y 2 = 8 x { y }^{ 2 }=8x 1 1

x y = 1 xy=-1 2 2

The derivative of the equation 1 1 is

d y d x = 4 y \frac { dy }{ dx } =\frac { 4 }{ y }

The derivative of the equation 2 2 is

d y d x = y x \frac { dy }{ dx } =\frac { -y }{ x }

Consider the common tangent touches the parabola at ( x 1 , y 1 ) \left( { x }_{ 1 },{ y }_{ 1 } \right) and the hyperbola at ( x 2 , y 2 ) \left( { x }_{ 2 },{ y }_{ 2 } \right) . Then, the slopes at this point of the curves should be equal hence,

4 y 1 = y 2 x 2 \frac { 4 }{ { y }_{ 1 } } =\frac { { -y }_{ 2 } }{ { x }_{ 2 } }

Now, the equation of tangent at both the curves at the respective points of tangency is as follows:

__At parabola:- __ ( y y 1 ) = 4 y 1 ( x x 1 ) (y-{ y }_{ 1 })=\frac { 4 }{ { y }_{ 1 } } (x-{ x }_{ 1 })

__At hyperbola :-__ ( y y 21 ) = y 2 x 2 ( x x 2 ) (y-{ y }_{ 21 })=\frac { { -y }_{ 2 } }{ { x }_{ 2 } } (x-{ x }_{ 2 })

On solving and comparing both the equations we get the follows

y 1 x 2 = 4 y 2 = y 1 2 4 x 1 2 y 2 x 2 \frac { { y }_{ 1 } }{ { x }_{ 2 } } =\frac { -4 }{ { y }_{ 2 } } =\frac { { y }_{ 1 }^{ 2 }-4{ x }_{ 1 } }{ 2{ y }_{ 2 }{ x }_{ 2 } }

Consider the y 1 x 2 = y 1 2 4 x 1 2 y 2 x 2 \frac { { y }_{ 1 } }{ { x }_{ 2 } } =\frac { { y }_{ 1 }^{ 2 }-4{ x }_{ 1 } }{ 2{ y }_{ 2 }{ x }_{ 2 } } part of the equality

y 1 x 2 = y 1 2 4 x 1 2 y 2 x 2 2 y 1 y 2 = y 1 2 4 x 1 2 y 1 y 2 = y 1 2 y 1 2 2 ( y 1 2 = 8 x 1 ) 4 y 1 y 2 = y 1 2 4 y 2 = y 1 \frac { { y }_{ 1 } }{ { x }_{ 2 } } =\frac { { y }_{ 1 }^{ 2 }-4{ x }_{ 1 } }{ 2{ y }_{ 2 }{ x }_{ 2 } } \\ \Rightarrow \quad 2{ y }_{ 1 }{ y }_{ 2 }={ y }_{ 1 }^{ 2 }-4{ x }_{ 1 }\\ \Rightarrow \quad 2{ y }_{ 1 }{ y }_{ 2 }={ y }_{ 1 }^{ 2 }-\frac { { y }_{ 1 }^{ 2 } }{ 2 } (\because { y }_{ 1 }^{ 2 }=8{ x }_{ 1 })\\ \Rightarrow \quad 4{ y }_{ 1 }{ y }_{ 2 }={ y }_{ 1 }^{ 2 }\\ \Rightarrow \quad 4{ y }_{ 2 }={ y }_{ 1 }

Now, consider

y 1 x 2 = 4 y 2 y 1 y 2 = 4 x 2 x 2 = y 2 2 \frac { { y }_{ 1 } }{ { x }_{ 2 } } =\frac { -4 }{ { y }_{ 2 } } \\ \Rightarrow \quad { y }_{ 1 }{ y }_{ 2 }=-4{ x }_{ 2 }\\ \Rightarrow \quad { x }_{ 2 }=-{ y }_{ 2 }^{ 2 }

Using the above result in equation 2 2 , we get x 2 y 2 = 1 y 2 3 = 1 y 2 = 1 { x }_{ 2 }{ y }_{ 2 }=-1\quad \Rightarrow \quad -{ y }_{ 2 }^{ 3 }=-1\quad \Rightarrow \quad { y }_{ 2 }=1 Hence we get the following values:- x 1 = 2 , y 1 = 4. x 2 = 1 , y 2 = 1 { x }_{ 1 }=2{ ,\quad y }_{ 1 }=4.\quad { x }_{ 2 }=-1,\quad { y }_{ 2 }=1

Using these we get the equation of tangent as y = x + 2 y x 2 = 0 y=x+2\quad \Rightarrow \quad y-x-2=0

a = 1 , b = 1 , c = 2 \therefore \quad a=1,\quad b=1,\quad c=-2

So, a b + c = 1 + 1 2 = 0 a-b+c=1+1-2=0

Still there's an easy way... Tangent to parabola: y = m x + 2 m y=mx+\frac 2m . Substitute this y y in x y = 1 xy=-1 - We get a quadratic in x x whose discriminant must be 0 0 . From there we get m = 1 m=1 .

Rishabh Jain - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...