Common Tangent Line 2

Calculus Level 3

Let n n be a positive integer and

{ f ( x ) = x 2 n g ( x ) = x 2 n \large \begin{cases} f(x) = -x^{2n} \\ g(x) = \sqrt[2n]x\ \end{cases}

Find the value of n n for which the common tangent line to both curves above passes through the point below, ( ( n + 3 + 51 2 n ) ( 1 2 n ) 1 2 n 1 , ( n 2 20 50 2 n ) ( 1 2 n ) 1 2 n 1 ) \left(\left(-n + 3 + \dfrac{51}{2n}\right)\left(\frac{1}{2n}\right)^{\frac{1}{2n - 1}}, \left(-\frac{n}{2} -20 - \dfrac{50}{2n}\right)\left(\frac{1}{2n}\right)^{\frac{1}{2n - 1}}\right)


The answer is 50.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Dec 6, 2018

f ( a ) = 2 n a 2 n 1 = g ( b ) = 1 2 n b 2 n 1 2 n f'(a) = -2na^{2n - 1} = g'(b) = \dfrac{1}{2n b^{\frac{2n - 1}{2n}}} a = 1 α n b 1 2 n \implies a = -\dfrac{1}{\alpha_{n} b^{\frac{1}{2n}}} , where α n = ( 2 n ) 2 2 n 1 \alpha_{n} = (2n)^{\frac{2}{2n - 1}} \implies

A : ( a , a 2 n ) = ( 1 α n b 1 2 n , 1 α n 2 n b ) A:(a,a^{2n}) = (-\dfrac{1}{\alpha_{n} b^{\frac{1}{2n}}}, -\dfrac{1}{\alpha_{n}^{2n} b}) and B : ( b , b 1 2 n ) B:(b,b^{\frac{1}{2n}}) m A B = ( α n 2 n b 2 n + 1 2 n + 1 α n b 2 n + 1 2 n + 1 ) ( 1 α 2 n 1 b 2 n 1 2 n ) = \implies m_{AB} = (\dfrac{\alpha_{n}^{2n} b^{\frac{2n + 1}{2n}} + 1}{\alpha_{n} b^{\frac{2n + 1}{2n}} + 1})(\dfrac{1}{\alpha^{2n - 1} b^{\frac{2n - 1}{2n}}}) = 1 α n 2 n 1 2 b 2 n 1 2 n \dfrac{1}{\alpha_{n}^{\frac{2n - 1}{2}} b^{\frac{2n - 1}{2n}}}

α n n b 2 n + 1 2 n = 1 α n \implies {\alpha_{n}}^{n} b^{\frac{2n + 1}{2n}} = \dfrac{1}{\sqrt{\alpha_{n}}} \implies

b = ( 1 α n n α n ) 2 n 2 n + 1 b = (\dfrac{1}{\alpha_{n}^{n}\sqrt{\alpha_{n}}})^{\frac{2n}{2n + 1}} \implies a = ( α n n α n ) 1 2 n + 1 α n a = -\dfrac{(\alpha_{n}^{n}\sqrt{\alpha_{n}})^{\frac{1}{2n + 1}}}{\alpha_{n}} and α n = ( 2 n ) 2 2 n 1 m A B = 2 n a 2 n 1 = ( α n ) 2 n 1 ( α n α n n + 1 ) 2 n 1 2 n + 1 = ( 2 n ) 2 ( n + 1 ) 2 n + 1 ( 2 n ) 2 ( n + 1 ) 2 n + 1 = 1 \alpha_{n} = (2n)^{\frac{2}{2n - 1}} \implies m_{AB} = -2n a^{2n - 1} = (\sqrt{\alpha_{n}})^{2n - 1} (\dfrac{\sqrt{\alpha_{n}}}{\alpha_{n}^{n +1}})^{\frac{2n - 1}{2n + 1}} = \dfrac{(2n)^{\frac{2(n +1)}{2n + 1}}}{(2n)^{\frac{2(n +1)}{2n + 1}}} = 1 .

Using B : ( ( 1 2 n ) 2 n 2 n 1 , ( 1 2 n ) 1 2 n 1 ) B:((\dfrac{1}{2n})^{\frac{2n}{2n - 1}}, (\dfrac{1}{2n})^{\frac{1}{2n - 1}}) \implies y x = ( 2 n 1 2 n ) ( 1 2 n ) 1 2 n 1 y - x = (\dfrac{2n - 1}{2n})(\dfrac{1}{2n})^{\frac{1}{2n - 1}}

The above common tangent line to both curves passes thru the point ( ( n + 3 + 51 2 n ) ( 1 2 n ) 1 2 n 1 , ( n 2 20 50 2 n ) ( 1 2 n ) 1 2 n 1 ) \left(\left(-n + 3 + \dfrac{51}{2n}\right)\left(\frac{1}{2n}\right)^{\frac{1}{2n - 1}}, \left(-\frac{n}{2} -20 - \dfrac{50}{2n}\right)\left(\frac{1}{2n}\right)^{\frac{1}{2n - 1}}\right)

( 1 2 n ) 1 2 n 1 ( n 2 23 101 2 n ) = ( 2 n 1 2 n ) ( 1 2 n ) 1 2 n 1 n 2 46 n 101 = 2 n 1 \implies (\dfrac{1}{2n})^{\frac{1}{2n - 1}}(\dfrac{n}{2} - 23 - \dfrac{101}{2n}) = (\dfrac{2n - 1}{2n})(\dfrac{1}{2n})^{\frac{1}{2n - 1}} \implies n^2 - 46n - 101= 2n - 1 \implies

n 2 48 n 100 = 0 ( n 50 ) ( n + 2 ) = 0 n^2 - 48n - 100 = 0 \implies (n - 50)(n + 2) = 0 and n 2 n = 50 . n \neq -2 \implies n = \boxed{50}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...