Let n be a positive integer and
⎩ ⎨ ⎧ f ( x ) = − x 2 n g ( x ) = 2 n x
Find the value of n for which the common tangent line to both curves above passes through the point below, ( ( − n + 3 + 2 n 5 1 ) ( 2 n 1 ) 2 n − 1 1 , ( − 2 n − 2 0 − 2 n 5 0 ) ( 2 n 1 ) 2 n − 1 1 )
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
f ′ ( a ) = − 2 n a 2 n − 1 = g ′ ( b ) = 2 n b 2 n 2 n − 1 1 ⟹ a = − α n b 2 n 1 1 , where α n = ( 2 n ) 2 n − 1 2 ⟹
A : ( a , a 2 n ) = ( − α n b 2 n 1 1 , − α n 2 n b 1 ) and B : ( b , b 2 n 1 ) ⟹ m A B = ( α n b 2 n 2 n + 1 + 1 α n 2 n b 2 n 2 n + 1 + 1 ) ( α 2 n − 1 b 2 n 2 n − 1 1 ) = α n 2 2 n − 1 b 2 n 2 n − 1 1
⟹ α n n b 2 n 2 n + 1 = α n 1 ⟹
b = ( α n n α n 1 ) 2 n + 1 2 n ⟹ a = − α n ( α n n α n ) 2 n + 1 1 and α n = ( 2 n ) 2 n − 1 2 ⟹ m A B = − 2 n a 2 n − 1 = ( α n ) 2 n − 1 ( α n n + 1 α n ) 2 n + 1 2 n − 1 = ( 2 n ) 2 n + 1 2 ( n + 1 ) ( 2 n ) 2 n + 1 2 ( n + 1 ) = 1 .
Using B : ( ( 2 n 1 ) 2 n − 1 2 n , ( 2 n 1 ) 2 n − 1 1 ) ⟹ y − x = ( 2 n 2 n − 1 ) ( 2 n 1 ) 2 n − 1 1
The above common tangent line to both curves passes thru the point ( ( − n + 3 + 2 n 5 1 ) ( 2 n 1 ) 2 n − 1 1 , ( − 2 n − 2 0 − 2 n 5 0 ) ( 2 n 1 ) 2 n − 1 1 )
⟹ ( 2 n 1 ) 2 n − 1 1 ( 2 n − 2 3 − 2 n 1 0 1 ) = ( 2 n 2 n − 1 ) ( 2 n 1 ) 2 n − 1 1 ⟹ n 2 − 4 6 n − 1 0 1 = 2 n − 1 ⟹
n 2 − 4 8 n − 1 0 0 = 0 ⟹ ( n − 5 0 ) ( n + 2 ) = 0 and n = − 2 ⟹ n = 5 0 .