Common Tangent Lines and Areas.

Calculus Level pending

Let n n be a positive integer, f ( x ) = x 1 2 n + 1 f(x) = x^{\frac{1}{2n + 1}} and g ( x ) = x 2 n + 1 g(x) = x^{2n + 1}

f ( x ) f(x) and g ( x ) g(x) have common tangent lines at points A A and B B and C C and D D respectively.

Let A T ( n ) A_{T}(n) be the area of the bounded regions S 1 S_{1} and S 2 S_{2} as shown above.

Find lim n A T ( n ) \lim_{n \rightarrow \infty} A_{T}(n) .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rocco Dalto
Dec 30, 2019

Let f ( x ) = x 1 2 n + 1 f(x) = x^{\frac{1}{2n + 1}} and g ( x ) = x 2 n + 1 g(x) = x^{2n + 1}

First we find the area A ( n ) A(n) of the regions R 1 R_{1} and R 2 R_{2} above.

From the graph above R ( 0 , 0 ) R y = x ( x 0 , y 0 ) = ( y 0 , x 0 ) R_{(0,0)} \circ R_{y = x} (x_{0},y_{0}) = (-y_{0},-x_{0})

Using A : ( x 0 , y 0 ) A: (x_{0},y_{0}) and B : ( y 0 , x 0 ) B: (-y_{0},-x_{0}) \implies slope m A B = 1 m_{AB} = 1 \implies

f ( x 0 ) = 1 2 n + 1 ( 1 x 0 ) 2 n 2 n + 1 = 1 f'(x_{0}) = \dfrac{1}{2n + 1}(\dfrac{1}{x_{0}})^{\frac{2n}{2n + 1}} = 1 \implies x 0 = ( 1 2 n + 1 ) 2 n + 1 2 n x_{0} = (\dfrac{1}{2n + 1})^{\frac{2n + 1}{2n}} \implies

A : ( ( 1 2 n + 1 ) 2 n + 1 2 n , ( 1 2 n + 1 ) 1 2 n ) A: ((\dfrac{1}{2n + 1})^{\frac{2n + 1}{2n}} , (\dfrac{1}{2n + 1})^{\frac{1}{2n}}) and B : ( ( 1 2 n + 1 ) 1 2 n ) , ( 1 2 n + 1 ) 2 n + 1 2 n ) B: (-(\dfrac{1}{2n + 1})^{\frac{1}{2n}}),-(\dfrac{1}{2n + 1})^{\frac{2n + 1}{2n}})

y = x + ( 2 n ) j ( n ) \implies y = x + (2n)j(n) , where j ( n ) = ( 1 2 n + 1 ) 2 n + 1 2 n j(n) = (\dfrac{1}{2n + 1})^{\frac{2n + 1}{2n}}

A 1 ( n ) = 0 j ( n ) ( x + ( 2 n ) j ( n ) x 1 2 n + 1 ) d x = \implies A_{1}(n) = \displaystyle\int_{0}^{j(n)} (x + (2n)j(n) - x^{\frac{1}{2n + 1}}) \:\ dx =

1 2 x 2 + ( 2 n ) j ( n ) x + ( 2 n + 1 2 n + 2 ) x 2 n + 2 2 n + 1 0 j ( n ) = \dfrac{1}{2}x^2 + (2n)j(n)x + (\dfrac{2n + 1}{2n + 2})x^{\frac{2n + 2}{2n + 1}}|_{0}^{j(n)} =

( 4 n + 1 2 ) ( j ( n ) ) 2 ( 2 n + 1 2 n + 2 ) ( j ( n ) ) 2 n + 2 2 n + 1 = (\dfrac{4n + 1}{2})(j(n))^2 - (\dfrac{2n + 1}{2n + 2})(j(n))^{\frac{2n + 2}{2n + 1}} =

( 4 n + 1 2 ) ( 1 2 n + 1 ) 2 n + 1 n ( 2 n + 1 2 n + 2 ) ( 1 2 n + 1 ) n + 1 n = (\dfrac{4n + 1}{2})(\dfrac{1}{2n + 1})^{\frac{2n + 1}{n}} - (\dfrac{2n + 1}{2n + 2})(\dfrac{1}{2n + 1})^{\frac{n + 1}{n}} =

1 2 ( n n + 1 ) ( 1 2 n + 1 ) 2 n + 1 n \boxed{\dfrac{1}{2}(\dfrac{n}{n + 1})(\dfrac{1}{2n + 1})^{\frac{2n + 1}{n}}}

and

A 2 ( n ) = ( 1 2 n + 1 ) 1 2 n 0 ( x + ( 2 n ) j ( n ) x 2 n + 1 ) d x = A_{2}(n) = \displaystyle\int_{-(\dfrac{1}{2n + 1})^{\frac{1}{2n}}}^{0} (x + (2n)j(n) - x^{2n + 1}) \:\ dx =

1 2 x 2 + ( 2 n ) j ( n ) x ( 1 2 n + 2 ) x 2 n + 2 ( 1 2 n + 1 ) 1 2 n 0 = \dfrac{1}{2}x^2 + (2n)j(n)x - (\dfrac{1}{2n + 2})x^{2n + 2}|_{-(\dfrac{1}{2n + 1})^{\frac{1}{2n}}}^{0} =

( 1 2 ( 1 2 n + 1 ) 1 n ( 2 n ) ( 1 2 n + 1 ) n + 1 n ( 1 2 n + 2 ) ( 1 2 n + 1 ) n + 1 n ) = -(\dfrac{1}{2}(\dfrac{1}{2n + 1})^{\frac{1}{n}} - (2n)(\dfrac{1}{2n + 1})^{\frac{n + 1}{n}} - (\dfrac{1}{2n + 2})(\dfrac{1}{2n + 1})^{\frac{n + 1}{n}}) =

( 1 2 ( 1 2 n + 1 ) 1 n ( 1 2 n + 1 ) n + 1 n ( ( 2 n + 1 ) 2 2 ( n + 1 ) ) ) = -(\dfrac{1}{2}(\dfrac{1}{2n + 1})^{\frac{1}{n}} - (\dfrac{1}{2n + 1})^{\frac{n + 1}{n}} (\dfrac{(2n + 1)^2}{2(n + 1)})) =

1 2 ( n n + 1 ) ( 1 2 n + 1 ) 1 n \boxed{\dfrac{1}{2}(\dfrac{n}{n + 1})(\dfrac{1}{2n + 1})^{\frac{1}{n}}}

A R 1 ( n ) = A 1 ( n ) + A 2 ( n ) = ( n n + 1 ) ( 2 n 2 + 2 n + 1 ( 2 n + 1 ) 2 ) ( 1 2 n + 1 ) 1 n = A R 2 ( n ) \implies A_{R_{1}}(n) = A_{1}(n) + A_{2}(n) = \boxed{(\dfrac{n}{n + 1})(\dfrac{2n^2 + 2n + 1}{(2n + 1)^2})(\dfrac{1}{2n + 1})^{\frac{1}{n}}} = A_{R_{2}}(n)

lim n A R 1 ( n ) = 1 2 lim n ( 1 2 n + 1 ) 1 n \implies \lim_{n \rightarrow \infty} A_{R_{1}}(n) = \dfrac{1}{2}\lim_{n \rightarrow \infty} (\dfrac{1}{2n + 1})^{\frac{1}{n}}

and

lim n ( 1 2 n + 1 ) 1 n = \lim_{n \rightarrow \infty} (\dfrac{1}{2n + 1})^{\frac{1}{n}} = lim n e ( ln ( 1 2 n + 1 ) n ) = \lim_{n \rightarrow \infty} e^{(\dfrac{\ln(\frac{1}{2n + 1})}{n})} =

e lim n ( ln ( 1 2 n + 1 ) n ) = e^{\lim_{n \rightarrow \infty} (\dfrac{\ln(\frac{1}{2n + 1})}{n})} = e lim n ( 2 2 n + 1 ) = e 0 = 1 e^{\lim_{n \rightarrow \infty} (\dfrac{-2}{2n + 1})} = e^{0} = 1

lim n A R 1 ( n ) = 1 2 \implies \lim_{n \rightarrow \infty} A_{R_{1}}(n) = \dfrac{1}{2} \implies

Total Area A = lim n A ( n ) = 2 lim n A R 1 ( n ) = 1 \boxed{A = \lim_{n \rightarrow \infty} A(n) = 2\lim_{n \rightarrow \infty} A_{R_{1}}(n) = 1} .

Next we find the rectangular area A A B D C ( n ) A_{ABDC}(n) .

Using the coordinates of points A , B , C A,B,C above and point D : ( x 0 , y 0 ) D: (-x_{0},-y_{0}) we have:

A C = 2 y 0 x 0 AC = \sqrt{2}|y_{0} - x_{0}| and A B = 2 y 0 + x 0 AB = \sqrt{2}|y_{0} + x_{0}| \implies

A A B D C ( n ) = 2 y 0 2 x 0 2 = 2 ( 1 2 n + 1 ) 1 n ( 1 2 n + 1 ) 2 n + 1 n = A_{ABDC}(n) = 2|y_{0}^2 - x_{0}^2| = 2|(\dfrac{1}{2n + 1})^{\frac{1}{n}} - (\dfrac{1}{2n + 1})^{\frac{2n + 1}{n}}| =

2 ( 1 2 n + 1 ) 1 n ( 1 ( 1 2 n + 1 ) 2 ) = 2(\dfrac{1}{2n + 1})^{\frac{1}{n}}(1 - (\dfrac{1}{2n + 1})^2) = 2 ( 4 n ) ( n + 1 ) ( 2 n + 1 ) 2 ( 1 2 n + 1 ) 1 n \boxed{\dfrac{2(4n)(n + 1)}{(2n + 1)^2}(\dfrac{1}{2n + 1})^{\frac{1}{n}}} .

From above lim n ( 1 2 n + 1 ) 1 n = 1 A = lim n A A B D C ( n ) = 2 \lim_{n \rightarrow \infty} (\dfrac{1}{2n + 1})^{\frac{1}{n}} = 1 \implies \boxed{A^{*} = \lim_{n \rightarrow \infty} A_{ABDC}(n) = 2}

lim n A T ( n ) = A A = 1 \implies \lim_{n \rightarrow \infty} A_{T}(n) = A^{*} - A = \boxed{1}

From the picture, we see that the points A,B, C and D are where the tangent is 1. Also noted that f and g are inverses of the others.

By thinking about the shape of the graph when n is large, one can see that the limit is an area of 2 triangles with vertices (0,0), (1,0), (0,1), (-1,0) and (0,-1), so, the area is then 1 \boxed{1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...